Solveeit Logo

Question

Question: The general solution of \(\left| \sin x \right|=\cos x\) is (When \(n\in Z \)) given by (A) \(n\pi...

The general solution of sinx=cosx\left| \sin x \right|=\cos x is (When nZn\in Z ) given by
(A) nπ+π4n\pi +\dfrac{\pi }{4}
(B) 2nπ±π42n\pi \pm \dfrac{\pi }{4}
(C) nπ±π4n\pi \pm \dfrac{\pi }{4}
(D) nππ4n\pi -\dfrac{\pi }{4}

Explanation

Solution

We solve this question by first considering the given equation, sinx=cosx\left| \sin x \right|=\cos x. Then we consider the definition of modulus function and then we use it to define sinx\left| \sin x \right|. Then we consider the case when sinx>0\sin x>0. Then we solve it to find the value of tanx\tan x. Then we use the formula for the general solution of equation tanx=tanθ\tan x=\tan \theta , x=nπ+θx=n\pi +\theta and find the general solution when sinx>0\sin x>0. Then we consider the case when sinx<0\sin x<0 and solve it to find the value of tanx\tan x. Then we use the formula for the general solution of equation tanx=tanθ\tan x=\tan \theta , x=nπ+θx=n\pi +\theta and find the general solution when sinx<0\sin x<0. So, combining the obtained solutions we can find the general solution of sinx=cosx\left| \sin x \right|=\cos x.

Complete step by step answer:
The equation we are given is sinx=cosx\left| \sin x \right|=\cos x.
First let us consider the definition of modulus function.
\left| x \right|=\left\\{ \begin{matrix} x\ \ \ if\ \ x>0 \\\ -x\ \ \ if\ \ x<0 \\\ \end{matrix} \right.
So, we can write sinx\left| \sin x \right| as,
\left| \sin x \right|=\left\\{ \begin{matrix} \sin x\ \ \ if\ \ \sin x>0 \\\ -\sin x\ \ \ if\ \ \sin x<0 \\\ \end{matrix} \right...............\left( 1 \right)
First let us consider the case when sinx>0\sin x>0.
Then from equation (1) we get sinx\left| \sin x \right| as,
sinx=sinx\Rightarrow \left| \sin x \right|=\sin x
As we are given that sinx=cosx\left| \sin x \right|=\cos x, we get,
cosx=sinx sinxcosx=1 tanx=1 \begin{aligned} & \Rightarrow \cos x=\sin x \\\ & \Rightarrow \dfrac{\sin x}{\cos x}=1 \\\ & \Rightarrow \tan x=1 \\\ \end{aligned}
Now let us find the principal value of the above tangent function.
tanx=tanπ4\Rightarrow \tan x=\tan \dfrac{\pi }{4}
Now let us consider the formula for the general solution of equation tanx=tanθ\tan x=\tan \theta ,
x=nπ+θx=n\pi +\theta
So, we get the general solution of tanx=tanπ4\tan x=\tan \dfrac{\pi }{4} as,
x=nπ+π4...........(2)\Rightarrow x=n\pi +\dfrac{\pi }{4}...........\left( 2 \right)
Now let us consider the case when sinx<0\sin x<0.
Then from equation (1) we get sinx\left| \sin x \right| as,
sinx=sinx\Rightarrow \left| \sin x \right|=-\sin x
As we are given that sinx=cosx\left| \sin x \right|=\cos x, we get,
cosx=sinx sinxcosx=1 tanx=1 \begin{aligned} & \Rightarrow \cos x=-\sin x \\\ & \Rightarrow \dfrac{\sin x}{\cos x}=-1 \\\ & \Rightarrow \tan x=-1 \\\ \end{aligned}
Now let us find the principal value of the above tangent function.
tanx=tan(π4)\Rightarrow \tan x=\tan \left( -\dfrac{\pi }{4} \right)
Now let us consider the formula for the general solution of equation tanx=tanθ\tan x=\tan \theta ,
x=nπ+θx=n\pi +\theta
So, we get the general solution of tanx=tan(π4)\tan x=\tan \left( -\dfrac{\pi }{4} \right) as,
x=nππ4...........(2)\Rightarrow x=n\pi -\dfrac{\pi }{4}...........\left( 2 \right)
So, from equation (2) and equation (3) we get the general solution of sinx=cosx\left| \sin x \right|=\cos x as,
x=nπ+π4,nππ4 x=nπ±π4 \begin{aligned} & \Rightarrow x=n\pi +\dfrac{\pi }{4},n\pi -\dfrac{\pi }{4} \\\ & \Rightarrow x=n\pi \pm \dfrac{\pi }{4} \\\ \end{aligned}
So, we get the general solution of sinx=cosx\left| \sin x \right|=\cos x as x=nπ±π4x=n\pi \pm \dfrac{\pi }{4}.

So, the correct answer is “Option A”.

Note: The common mistake one makes is one might take the formula for the general solution of equation tanx=tanθ\tan x=\tan \theta as x=2nπ+θx=2n\pi +\theta then one gets the final solution for the question as x=2nπ±π4x=2n\pi \pm \dfrac{\pi }{4} and mark the answer as Option B. But it is wrong as the correct formula is x=nπ+θx=n\pi +\theta .