Solveeit Logo

Question

Question: The general solution of \(x ^ { 2 } \frac { d y } { d x } = 2\) is...

The general solution of x2dydx=2x ^ { 2 } \frac { d y } { d x } = 2 is

A

y=c+2xy = c + \frac { 2 } { x }

B

y=c2xy = c - \frac { 2 } { x }

C

y=2cxy = 2 c x

D

y=c3x2y = c - \frac { 3 } { x ^ { 2 } }

Answer

y=c2xy = c - \frac { 2 } { x }

Explanation

Solution

dydx=2x2\frac { d y } { d x } = \frac { 2 } { x ^ { 2 } }dy=2x2dxd y = \frac { 2 } { x ^ { 2 } } d x, Now integrate it.