Solveeit Logo

Question

Question: The general solution of \(\frac{dy}{dx}\) = \(\frac{2x - y}{x + 2y}\)is –...

The general solution of dydx\frac{dy}{dx} = 2xyx+2y\frac{2x - y}{x + 2y}is –

A

x2 – xy + y2 = c

B

x2 – xy – y2 = c

C

x2 + xy – y2 = c

D

x2 + xy2 = c

Answer

x2 – xy – y2 = c

Explanation

Solution

Given that,dydx\frac{dy}{dx} = 2xyx+2y\frac{2x - y}{x + 2y} ... (i)

Let y = vx Ž dydx\frac{dy}{dx} = v + x dvdx\frac{dv}{dx}

\ v + xdvdx\frac{dv}{dx} = 2v1+2v\frac{2 - v}{1 + 2v}

Ž xdvdx\frac{dv}{dx}= 2vv(1+2v)1+2v\frac{2 - v - v(1 + 2v)}{1 + 2v}

Ž 1+2v2(1vv2)\int_{}^{}\frac{1 + 2v}{2(1 - v - v^{2})}dv = 1x\int_{}^{}\frac{1}{x}dx

Ž log k – 12\frac{1}{2}log (1 – v – v2) = log x

Ž 2 log k – log (1 – v – v2) = 2 log x

Ž log c = log [x2 (1 – v – v2)]

Ž c = x2 (1yxy2x2)\left( 1 - \frac{y}{x} - \frac{y^{2}}{x^{2}} \right)

Ž x2 – xy – y2 = c