Solveeit Logo

Question

Mathematics Question on Solutions of Differential Equations

The general solution of differential equation d2ydx2+9y=sin3x\frac{d^2y}{dx^2}+9y=sin^3x is
(given that c1 and c2 are arbitrary constants)

A

y=c1cos(3x+c2)+124sinxsin3xy=c_1\cos(3x+c_2)+\frac{1}{24}\sin x-sin3x

B

y=c1e3x+c2e3x+132sinx+12cos3xy=c_1e^{3x}+c_2e^{-3x}+\frac{1}{32}sinx+\frac{1}{2}\cos 3x

C

y=c1+c2xe3x+2sinx513sin3xy=c_1+c_2xe^{3x}+2sinx-\frac{5}{13}sin3x

D

y=c1sin(3x+c2)+332sinx+x24cos3xy=c_1sin(3x+c_2)+\frac{3}{32}sinx+\frac{x}{24}\cos 3x

Answer

y=c1sin(3x+c2)+332sinx+x24cos3xy=c_1sin(3x+c_2)+\frac{3}{32}sinx+\frac{x}{24}\cos 3x

Explanation

Solution

The correct answer is(D): y=c1sin(3x+c2)+332sinx+x24cos3xy=c_1sin(3x+c_2)+\frac{3}{32}sinx+\frac{x}{24}\cos 3x