Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

The general solution of cotθ+tanθ=2\cot\, \theta + \tan\, \theta = 2 is

A

θ=nπ2+(1)nπ8\theta = \frac{n \pi} {2}+(-1)^n \frac{ \pi} {8}

B

θ=nπ2+(1)nπ4\theta =\frac{n \pi} {2}+(-1)^n \frac {\pi}{4}

C

θ=nπ2+(1)nπ6\theta =\frac{n \pi} {2}+(-1)^n \frac{\pi}{6}

D

θ=nπ2+(1)nπ8\theta =\frac{n \pi} {2}+(-1)^n \frac{\pi}{8}

Answer

θ=nπ2+(1)nπ4\theta =\frac{n \pi} {2}+(-1)^n \frac {\pi}{4}

Explanation

Solution

We have, cotθ+tanθ=2\cot\, \theta+\tan \,\theta=2 cosθsinθ+sinθcosθ=2\Rightarrow \frac{\cos \,\theta}{\sin\, \theta}+\frac{\sin\,\theta}{\cos \,\theta} =2 cos2θ+sin2θsinθcosθ=2\Rightarrow \frac{\cos ^{2} \theta+\sin ^{2} \theta}{\sin \,\theta\, \cos\, \theta} =2 1=2sinθcosθ\Rightarrow 1 =2\, \sin \,\theta\, \cos\, \theta sin2θ=1\Rightarrow \sin \,2 \theta =1 sin2θ=sinπ2\Rightarrow \sin \,2 \theta =\sin \frac{\pi}{2} 2θ=nπ+(1)nπ2\Rightarrow 2 \theta =n \pi+(-1)^{n} \frac{\pi}{2} θ=nπ2+(1)nπ4 \therefore \theta =\frac{n \pi}{2}+(-1)^{n} \frac{\pi}{4}