Question
Mathematics Question on Introduction to Trigonometry
The general solution of cotθ+tanθ=2
A
(A) θ=nπ2+(−1)nπ8
B
(B) θ=nπ2+(−1)nπ4
C
(C) θ=nπ2+(−1)nπ6
D
(D) θ=nπ+(−1)nπ8
Answer
(B) θ=nπ2+(−1)nπ4
Explanation
Solution
Given: cotθ+tanθ=2
⇒cosθsinθ+sinθcosθ=2,
use basic trigonometric identities
⇒sin2θ+cos2θsinθcosθ=2⇒1sinθcosθ=2,
Pythagorean identity⇒2sinθcosθ=1⇒sin2θ=1,
double angle formula⇒sin2θ=sinπ2
Hence general solution is given by,
2θ=nπ+(−1)nπ2, where n∈Z∴θ=nπ2+(−1)nπ4
Note that: If sinθ=sinα,
then general solution is given by
θ=nπ+(−1)nα
Hence, the correct option is (B).