Solveeit Logo

Question

Mathematics Question on Introduction to Trigonometry

The general solution of cot⁡θ+tan⁡θ=2

A

(A) θ=nπ2+(−1)nπ8

B

(B) θ=nπ2+(−1)nπ4

C

(C) θ=nπ2+(−1)nπ6

D

(D) θ=nπ+(−1)nπ8

Answer

(B) θ=nπ2+(−1)nπ4

Explanation

Solution

Given: cot⁡θ+tan⁡θ=2
⇒cos⁡θsin⁡θ+sin⁡θcos⁡θ=2,
use basic trigonometric identities
⇒sin2⁡θ+cos2⁡θsin⁡θcos⁡θ=2⇒1sin⁡θcos⁡θ=2,
Pythagorean identity⇒2sin⁡θcos⁡θ=1⇒sin⁡2θ=1,
double angle formula⇒sin⁡2θ=sin⁡π2
Hence general solution is given by,
2θ=nπ+(−1)nπ2, where n∈Z∴θ=nπ2+(−1)nπ4
Note that: If sin⁡θ=sin⁡α,
then general solution is given by
θ=nπ+(−1)nα
Hence, the correct option is (B).