Question
Mathematics Question on Differential equations
The general solution of a differential equation of the type dydx+p1x=Q1 is
A
ye∫p1dy=∫(Q1e∫p1dy)dy+C
B
y.e∫p1dx=∫(Q1e∫p1dx)dx+C
C
xe∫p1dy=∫(Q1e∫p1dy)dy+C
D
xe∫p1dx=∫(Q1e∫p1dx)dx+C
Answer
xe∫p1dy=∫(Q1e∫p1dy)dy+C
Explanation
Solution
The integrating factor of the given differential equation dydx+p1x=Q1 is e∫p1dy.
The general solution of the differential equation is given by,
x(I.F.)=$$\int{(Q×I.F.)dy}+C
⇒x.e^{\int{p_{1}dy}}=$$\int{(Q_{1}e^{\int{p_{1}dy)}}dy}+C
Hence, the correct answer is C.