Solveeit Logo

Question

Mathematics Question on Differential equations

The general solution of a differential equation of the type dxdy+p1x=Q1\frac{dx}{dy}+p_{1}x=Q1 is

A

yep1dy=(Q1ep1dy)dy+Cye^{\int{p_{1}dy}}=\int{(Q_{1}e^{\int{p_{1}dy}})}dy+C

B

y.ep1dx=(Q1ep1dx)dx+Cy.e^{\int{p_{1}dx}}=\int{(Q_{1}e^{\int{p_{1}dx}})}dx+C

C

xep1dy=(Q1ep1dy)dy+Cxe^{\int{p_{1}dy}}=\int{(Q_{1}e^{\int{p_{1}dy}})}dy+C

D

xep1dx=(Q1ep1dx)dx+Cxe^{\int{p_{1}dx}}=\int{(Q_{1}e^{\int{p_{1}dx}})}dx+C

Answer

xep1dy=(Q1ep1dy)dy+Cxe^{\int{p_{1}dy}}=\int{(Q_{1}e^{\int{p_{1}dy}})}dy+C

Explanation

Solution

The integrating factor of the given differential equation dxdy+p1x=Q1\frac{dx}{dy}+p_{1}x=Q_{1} is ep1dy.e^{∫p_{1}dy}.

The general solution of the differential equation is given by,

x(I.F.)=$$\int{(Q×I.F.)dy}+C

⇒x.e^{\int{p_{1}dy}}=$$\int{(Q_{1}e^{\int{p_{1}dy)}}dy}+C

Hence, the correct answer is C.