Solveeit Logo

Question

Mathematics Question on Differential equations

The general solution of 1+Sin2x=3SinxCosx,Tanx121+\operatorname{Sin}^{2} x=3 \operatorname{Sin} x \cdot \operatorname{Cos} x, \operatorname{Tan} x \neq \frac{1}{2} is ......

A

nππ4,nZn\pi-\frac{\pi}{4},n\in Z

B

nπ+π4,nZn\pi+\frac{\pi}{4},n\in Z

C

2nπ+π4,nZ2n\pi+\frac{\pi}{4},n\in Z

D

2nππ4,nZ2n\pi-\frac{\pi}{4},n\in Z

Answer

nπ+π4,nZn\pi+\frac{\pi}{4},n\in Z

Explanation

Solution

1+sin2x=3sinxcosx,tanx121+\sin ^{2} x=3 \sin x \cdot \cos x, \tan x \neq \frac{1}{2} Divided by cos2x\cos ^{2} x on both sides, 1cos2x+sin2xcos2x=3sinxcosxcosxcosx\frac{1}{\cos ^{2} x}+\frac{\sin ^{2} x}{\cos ^{2} x}=3 \frac{\sin x \cdot \cos x}{\cos x \cdot \cos x} sec2x+tan2x=3tanx\sec ^{2} x+\tan ^{2} x=3 \tan x 1+tan2x+tan2x=3tanx1+\tan ^{2} x+\tan ^{2} x=3 \tan x 2tan2x3tanx+1=02 \tan ^{2} x-3 \tan x+1=0 2tan2x2tanxtanx+1=02 \tan ^{2} x-2 \tan x-\tan x+1=0 2tanx(tanx1)1(tanx1)=02 \tan x(\tan x-1)-1(\tan x-1)=0 (tanx1)(2tanx1)=0(\tan x-1)(2 \tan x-1)=0 tanx=1,12\tan x=1, \frac{1}{2} We take, tanx=1(tanx12)\tan x =1 \left(\because \tan x \neq \frac{1}{2}\right) tanx=tan(π/4)\tan x =\tan (\pi / 4) x=nπ+π/4,nZx =n \pi+\pi / 4, n \in Z