Solveeit Logo

Question

Question: The gas phase reaction 2A(g) $\rightleftharpoons$ A2(g) at 400 K has $\Delta$G° = + 25.2 kJ mol$^{...

The gas phase reaction

2A(g) \rightleftharpoons A2(g)

at 400 K has Δ\DeltaG° = + 25.2 kJ mol1^{-1}.

The equilibrium constant KC for this reaction is ......×\times 102^{-2}. (Round off to the Nearest integer)

[Use: R = 8.3 J mol1^{-1}K1^{-1}, ln 10 = 2.3

log10_{10} 2 = 0.30, 1 atm = 1 bar]

[antilog (-0.3) = 0.501]

Answer

166

Explanation

Solution

1. Convert ΔG\Delta G^\circ to Joules:
ΔG=25.2×103 J mol1\Delta G^\circ = 25.2 \times 10^3 \text{ J mol}^{-1}.

2. Use ΔG=RTlnKp\Delta G^\circ = -RT \ln K_p to find lnKp\ln K_p:
lnKp=25.2×1038.3×400=2520033207.59036\ln K_p = -\frac{25.2 \times 10^3}{8.3 \times 400} = -\frac{25200}{3320} \approx -7.59036.

3. Convert lnKp\ln K_p to log10Kp\log_{10} K_p:
log10Kp=7.590362.33.30016\log_{10} K_p = \frac{-7.59036}{2.3} \approx -3.30016.

4. Calculate KpK_p:
Kp=103.30016=100.69984×1045.010×104K_p = 10^{-3.30016} = 10^{0.69984} \times 10^{-4} \approx 5.010 \times 10^{-4}.

5. Determine Δng\Delta n_g for 2A(g)A2(g)2A(g) \rightleftharpoons A_2(g):
Δng=12=1\Delta n_g = 1 - 2 = -1.

6. Use Kc=Kp(RT)Δng=Kp×RTK_c = K_p (RT)^{-\Delta n_g} = K_p \times RT:
Kc=(5.010×104)×(8.3×400)=(5.010×104)×33201.66332K_c = (5.010 \times 10^{-4}) \times (8.3 \times 400) = (5.010 \times 10^{-4}) \times 3320 \approx 1.66332.

7. Express KcK_c as X×102X \times 10^{-2}:
1.66332=166.332×1021.66332 = 166.332 \times 10^{-2}.

8. Round XX to the nearest integer:
166166.