Solveeit Logo

Question

Question: The gas phase decomposition of acetic acid at 1189 K proceeds by way of two parallel reactions. \...

The gas phase decomposition of acetic acid at 1189 K proceeds by way of two parallel reactions.
CH3COOHCH4+CO2k1=3.8sec1C{H_3}COOH \to C{H_4} + C{O_2}\,{k_1} = 3.8{\sec ^{ - 1}}
CH3COOHCH2=C=O+H2Ok2=0.2sec1C{H_3}COOH \to C{H_2} = C = O + {H_2}O\,{k_2} = 0.2{\sec ^{ - 1}}
What is the maximum percentage yield of the ketene CH2COC{H_2}CO obtainable at this temperature?
A. 5%5\%
B. 95%95\%
C. 15%15\%
D. 10%10\%

Explanation

Solution

The two parallel reactions are given. The ratio of concentration of this reaction is following:
[B][C]=k1k2or[C][B]=k2k1\dfrac{{[B]}}{{[C]}} = \dfrac{{k1}}{{k2}}\,or\,\dfrac{{[C]}}{{[B]}} = \dfrac{{k2}}{{k1}}

Complete step by step solution:
We have
k1=3.8sec1{k_1} = 3.8{\sec ^{ - 1}}
k2=0.2sec1{k_2} = 0.2{\sec ^{ - 1}}
This equation is used for rate of change of Acetic acid
[CH2CO]=k1k1+k2×[CH3COOH]0{[C{H_2}CO]_\infty } = \dfrac{{{k_1}}}{{{k_1} + {k_2}}} \times {[C{H_3}COOH]_0}
\Rightarrow [CH2CO][CH3COOH]0=k1k1+k2×100%\dfrac{{{{[C{H_2}CO]}_\infty }}}{{{{[C{H_3}COOH]}_0}}} = \dfrac{{{k_1}}}{{{k_1} + {k_2}}} \times 100\%
\Rightarrow [CH2=C=0][CH4]×100=k2k1×100=0.23.8×100=0.05%[CH2=C=0][CH4]×100\dfrac{{[C{H_2} = C = 0]}}{{[C{H_4}] \times 100 = \dfrac{{{k_2}}}{{{k_1}}}}} \times 100 = \dfrac{{0.2}}{{3.8}} \times 100 = 0.05\% \dfrac{{[C{H_2} = C = 0]}}{{[C{H_4}] \times 100}}
So, the maximum percentage yield of the ketene CH2COC{H_2}CO obtainable at this temperature is 5%5\% .

Hence, the correct answer is option A.

Note: The alternative method used can be:
Rate of change of Acetic acid
d[A]dt=k1[A]+k2[A]- \dfrac{{d[A]}}{{dt}} = {k_1}[A] + {k_2}[A]
x = concentration of products formed
So,
x=[A]0[A]x = {[A]^0} - [A]
This equation can be used for rate of change of A
dxdt=k1([A]0x)+k2([A]0x)\dfrac{{dx}}{{dt}} = k1({[A]^0} - x) + k2({[A]^0} - x)
\Rightarrow dxdt=(9k1+k2)([A]0X)\dfrac{{dx}}{{dt}} = (9k1 + k2)({[A]^0} - X)
\Rightarrow (k1+k2)t=In([A]0[A]0x)(k1 + k2)t = In\left( {\dfrac{{{{[A]}^0}}}{{{{[A]}^0} - x}}} \right)
\Rightarrow x=[A]0(1e(k1+k2)t)x = {[A]^0}(1 - {e^{ - (k1 + k2)t}})
\Rightarrow x2=[A]0(1e(o+k2)t)x2 = {[A]^0}(1 - {e^{ - (o + k2)t}})
\Rightarrow x2x=[A]0k2t[A]0(k1+k2)t\dfrac{{x2}}{x} = \dfrac{{{{[A]}^0}k2t}}{{{{[A]}^0}(k1 + k2)t}}
\Rightarrow x2x=k2k1+k2\dfrac{{x2}}{x} = \dfrac{{k2}}{{k1 + k2}}
By solving the equation, we get the maximum percentage yield of ketene.