Solveeit Logo

Question

Mathematics Question on Differentiability

The functions f,gf , g and hh satisfy the relations f(x)=g(x+1)f ^{'}\left(x\right)=g\left(x+1\right). Then f"(2x)f ^{"}\left(2x\right) is equal to

A

h(2x)h\left(2x\right)

B

4h(2x)4h\left(2x\right)

C

h(2x1)h\left(2x-1\right)

D

h(2x+1)h\left(2x+1\right)

Answer

h(2x)h\left(2x\right)

Explanation

Solution

We have,
f(x)=g(x+1)f^{\prime}(x)= g(x+1)
f(x)=g(x+1)\Rightarrow f^{\prime \prime}(x) =g^{\prime}(x+1)
 But g(x)=h(x1)\text { But } g^{\prime}(x)=h(x-1)
g(x+1)=h(x+11)\Rightarrow g^{\prime}(x+1) =h(x+1-1)
=h(x)=h(x)
f(x)=h(x)\therefore f^{\prime \prime}(x)=h(x)
f(2x)=h(2x)\Rightarrow f^{\prime \prime}(2 x) =h(2 x)