Solveeit Logo

Question

Question: The function \(y = \frac{x}{\log x}\) increases in the interval...

The function y=xlogxy = \frac{x}{\log x} increases in the interval

A

(e,)(e,\infty)

B

[e,)\lbrack e,\infty)

C

(0,e)(0,e)

D

[0,e]\lbrack 0,e\rbrack

Answer

[e,)\lbrack e,\infty)

Explanation

Solution

y=logx1(logx)2y' = \frac{\log x - 1}{\left( \log x \right)^{2}}

Since (logx)2\left( \log x \right)^{2}is always positive, we have y>0y' > 0 if logx>1\log x > 1. That is, if x>e,x > e, or if x(e,)x \in (e,\infty) Therefore, yy increases on (e,)(e,\infty) or any interval contained in (e,)(e,\infty).