Solveeit Logo

Question

Question: The function \(y = \frac{x}{\left( 1 + x^{2} \right)}\)decreases in the interval...

The function y=x(1+x2)y = \frac{x}{\left( 1 + x^{2} \right)}decreases in the interval

A

(-1,1)

B

[1,)\lbrack 1,\infty)

C

(,1]( - \infty,1\rbrack

D

(,)( - \infty,\infty)

Answer

[1,)\lbrack 1,\infty)

Explanation

Solution

y=(1+x2)2x.x(1+x2)2=1x2(1+x2)2y' = \frac{\left( 1 + x^{2} \right) - 2x.x}{\left( 1 + x^{2} \right)^{2}} = \frac{1 - x^{2}}{\left( 1 + x^{2} \right)^{2}}

Since (1+x2)2>0\left( 1 + x^{2} \right)^{2} > 0 for all xx, we have y<0y' < 0

That is 1x2<01 - x^{2} < 0, whence x>1x > 1 or x<1x < - 1 .

Therefore, x(,1)x \in ( - \infty, - 1) or x(1,)x \in (1,\infty)

Thus x(1+x2)\frac{x}{\left( 1 + x^{2} \right)} decreases in (,1]( - \infty, - 1\rbrackor [1,)\lbrack 1,\infty)