Solveeit Logo

Question

Question: The function \(y = f\left( x \right)\) is the solution of the differential equation \(\dfrac{{dy}}{{...

The function y=f(x)y = f\left( x \right) is the solution of the differential equation dydx+xyx21=x4+2x1x2\dfrac{{dy}}{{dx}} + \dfrac{{xy}}{{{x^2} - 1}} = \dfrac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }} in (-1, 1) satisfying f(0)=0f\left( 0 \right) = 0 then 3232f(x)dx\int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {f\left( x \right)dx} is
A. π332\dfrac{\pi }{3} - \dfrac{{\sqrt 3 }}{2}
B. π334\dfrac{\pi }{3} - \dfrac{{\sqrt 3 }}{4}
C. π6+34\dfrac{\pi }{6} + \dfrac{{\sqrt 3 }}{4}
D. π634\dfrac{\pi }{6} - \dfrac{{\sqrt 3 }}{4}

Explanation

Solution

To solve this question, we will use the concept of linear differential equation. We have to follow the following steps to solve a linear differential equation.
Step 1: write the differential equation in the form dydx+Py=Q\dfrac{{dy}}{{dx}} + Py = Q and obtain P and Q.
Step 2: find integration factor (I.F.) given by I.F.=ePdxI.F. = {e^{\int {Pdx} }}
Step 3: multiply both sides of the equation in step 1 by I.F.
Step 4: integrate both sides of the equation obtained in step 3 with respect to x to obtain y(I.F.)=Q(I.F.)dx+Cy\left( {I.F.} \right) = \int {Q\left( {I.F.} \right)dx + C} , which gives the required solution.

Complete step-by-step answer:
Given that,
Differential equation is:
dydx+xyx21=x4+2x1x2\dfrac{{dy}}{{dx}} + \dfrac{{xy}}{{{x^2} - 1}} = \dfrac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }} …….. (i)
Comparing this with the general form of differential equation, i.e. dydx+Py=Q\dfrac{{dy}}{{dx}} + Py = Q
We get,
P=xx21\Rightarrow P = \dfrac{x}{{{x^2} - 1}} and Q=x4+2x1x2Q = \dfrac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }}
We know that,
Integration factor (I.F.) is given by,
I.F.=ePdxI.F. = {e^{\int {Pdx} }}
Putting the value of P, we will get
I.F.=exx21dx\Rightarrow I.F. = {e^{\int {\dfrac{x}{{{x^2} - 1}}dx} }} ……… (ii)
First, we will find xx21dx\int {\dfrac{x}{{{x^2} - 1}}} dx
So, let t=x21t = {x^2} - 1
Differentiate both sides,
dt=2xdxdt = 2xdx
dt2=xdx\dfrac{{dt}}{2} = xdx
Using this, we can write the above integration as:
1tdt2\Rightarrow \int {\dfrac{1}{t}} \dfrac{{dt}}{2}
Integrating this, we will get
12lnt+C\Rightarrow \dfrac{1}{2}\ln \left| t \right| + C
Replace t=x21t = {x^2} - 1,
12lnx21+C\Rightarrow \dfrac{1}{2}\ln \left| {{x^2} - 1} \right| + C
Putting this value in equation (ii), we will get
I.F.=e12lnx21+C\Rightarrow I.F. = {e^{\dfrac{1}{2}\ln \left| {{x^2} - 1} \right| + C}}
According to the question,
The differential equation satisfies (-1, 1)
So, we can say that,
x21=1x2\left| {{x^2} - 1} \right| = 1 - {x^2}
Hence,
I.F.=eln(1x2)+C\Rightarrow I.F. = {e^{\ln \left( {\sqrt {1 - {x^2}} } \right) + C}}
Solving this, we will get
I.F.=1x2\Rightarrow I.F. = \sqrt {1 - {x^2}} [elnx=x\therefore {e^{\ln x}} = x]
Now,
The required solution will be,
y(I.F.)=Q(I.F.)dx+Cy\left( {I.F.} \right) = \int {Q\left( {I.F.} \right)dx + C}
Putting the required values, we will get
y1x2=x4+2x1x21x2dx+C\Rightarrow y\sqrt {1 - {x^2}} = \int {\dfrac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }}\sqrt {1 - {x^2}} dx + C}
y1x2=(x4+2x)dx+C\Rightarrow y\sqrt {1 - {x^2}} = \int {\left( {{x^4} + 2x} \right)dx + C}
Solving this, we will get
y1x2=x55+x2+C\Rightarrow y\sqrt {1 - {x^2}} = \dfrac{{{x^5}}}{5} + {x^2} + C
we know that,
y=f(x)y = f\left( x \right)
So,
f(x)1x2=x55+x2+C\Rightarrow f\left( x \right)\sqrt {1 - {x^2}} = \dfrac{{{x^5}}}{5} + {x^2} + C ……. (iii)
Putting x = 0, we will get
f(0)102=055+02+C\Rightarrow f\left( 0 \right)\sqrt {1 - {0^2}} = \dfrac{{{0^5}}}{5} + {0^2} + C
We have given f(0)=0f\left( 0 \right) = 0
Hence, we get
C=0\Rightarrow C = 0
Therefore, equation (iii) will become,
f(x)1x2=x55+x2\Rightarrow f\left( x \right)\sqrt {1 - {x^2}} = \dfrac{{{x^5}}}{5} + {x^2}
f(x)=(x55+x2)1x2\Rightarrow f\left( x \right) = \dfrac{{\left( {\dfrac{{{x^5}}}{5} + {x^2}} \right)}}{{\sqrt {1 - {x^2}} }}
According to the question, we have to find 3232f(x)dx\int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {f\left( x \right)dx}
Putting the value of f(x),
3232f(x)dx=3232(x55+x2)1x2dx\Rightarrow \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {f\left( x \right)dx} = \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\dfrac{{\left( {\dfrac{{{x^5}}}{5} + {x^2}} \right)}}{{\sqrt {1 - {x^2}} }}dx}
We can write this as,
3232(x551x2)dx+3232(x21x2)dx\Rightarrow \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^5}}}{{5\sqrt {1 - {x^2}} }}} \right)dx} + \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^2}}}{{\sqrt {1 - {x^2}} }}} \right)dx} ………. (iv)
Using the identity, we know that
aaf(x)dx=0\int\limits_{ - a}^a {f\left( x \right)dx} = 0, if f is an odd function and,
aaf(x)dx=20af(x)dx\int\limits_{ - a}^a {f\left( x \right)dx} = 2\int\limits_0^a {f\left( x \right)dx} , if f is an even function.
Here we can see that,
x551x2\dfrac{{{x^5}}}{{5\sqrt {1 - {x^2}} }} is an odd function.
So,
3232(x551x2)dx=0\Rightarrow \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^5}}}{{5\sqrt {1 - {x^2}} }}} \right)dx} = 0
Then, equation (iv) will become,
2032(x21x2)dx\Rightarrow 2\int\limits_0^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^2}}}{{\sqrt {1 - {x^2}} }}} \right)dx}
Put x=sinθx = \sin \theta
Differentiate both sides,
dx=cosθdθdx = \cos \theta d\theta
When x=0x = 0, θ=sin10=0\theta = {\sin ^{ - 1}}0 = 0
And when x=32x = \dfrac{{\sqrt 3 }}{2}, θ=sin132=π3\theta = {\sin ^{ - 1}}\dfrac{{\sqrt 3 }}{2} = \dfrac{\pi }{3}
Using this, we will get
20π3(sin2θ1sin2θ)cosθdθ\Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {\left( {\dfrac{{{{\sin }^2}\theta }}{{\sqrt {1 - {{\sin }^2}\theta } }}} \right)\cos \theta d\theta }
20π3(sin2θcosθ)cosθdθ\Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {\left( {\dfrac{{{{\sin }^2}\theta }}{{\cos \theta }}} \right)\cos \theta d\theta } [1sin2θ=cosθ\therefore \sqrt {1 - {{\sin }^2}\theta } = \cos \theta ]
20π3sin2θdθ\Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {{{\sin }^2}\theta d\theta } ….. (v)
We know that,
cos2x=12sin2x\Rightarrow \cos 2x = 1 - 2{\sin ^2}x
So,
sin2x=1cos2x2\Rightarrow {\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}
Hence equation (v) will become,
20π31cos2x2dθ\Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {\dfrac{{1 - \cos 2x}}{2}d\theta }
Integrating this, we will get
2[θ2sin2θ4]0π3\Rightarrow 2\left[ {\dfrac{\theta }{2} - \dfrac{{\sin 2\theta }}{4}} \right]_0^{\dfrac{\pi }{3}}
2[(π6sin2π34)(02sin204)]\Rightarrow 2\left[ {\left( {\dfrac{\pi }{6} - \dfrac{{\sin \dfrac{{2\pi }}{3}}}{4}} \right) - \left( {\dfrac{0}{2} - \dfrac{{\sin 20}}{4}} \right)} \right]
2[π6380]\Rightarrow 2\left[ {\dfrac{\pi }{6} - \dfrac{{\sqrt 3 }}{8} - 0} \right]
π334\Rightarrow \dfrac{\pi }{3} - \dfrac{{\sqrt 3 }}{4}
Hence, we can say that the value of 3232f(x)dx\int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {f\left( x \right)dx} is π334\dfrac{\pi }{3} - \dfrac{{\sqrt 3 }}{4}

So, the correct answer is “Option B”.

Note: when the differential equation is in the form dxdy+Rx=S\dfrac{{dx}}{{dy}} + Rx = S, then
Step 1: write the differential equation in the form dxdy+Rx=S\dfrac{{dx}}{{dy}} + Rx = S and obtain R and S.
Step 2: find integration factor (I.F.) given by I.F.=eRdyI.F. = {e^{\int {Rdy} }}
Step 3: multiply both sides of the equation in step 1 by I.F.
Step 4: integrate both sides of the equation obtained in step 3 with respect to y to obtain x(I.F.)=S(I.F.)dy+Cx\left( {I.F.} \right) = \int {S\left( {I.F.} \right)dy + C} , which gives the required solution.