Solveeit Logo

Question

Question: The function \(x^{x}\) is increasing, when...

The function xxx^{x} is increasing, when

A

x>1ex > \frac{1}{e}

B

x<1ex < \frac{1}{e}

C

x<0x < 0

D

For all real x

Answer

x>1ex > \frac{1}{e}

Explanation

Solution

Let y=xxy = x^{x}dydx=xx(1+logx)\frac{dy}{dx} = x^{x}(1 + \log x); For dydx>0\frac{dy}{dx} > 0

xx(1+logx)>0x^{x}(1 + \log x) > 01+logx>01 + \log x > 0logex>loge1e\log_{e}x > \log_{e}\frac{1}{e}

For this to be positive, x should be greater than 1e\frac{1}{e}.