Solveeit Logo

Question

Mathematics Question on Relations and functions

The function 't' which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined by: t(C)=9C5+32t(C)=\frac {9C}{5}+32
Find:

  1. t(0)
  2. t(28)
  3. t(-10)
  4. The value of C, when t(C) = 212
Answer

The given function is t(C)=9C5+32t(C)=\frac {9C}{5}+32
Therefore,
(i) t(0)t(0) = \frac {9\times 0}{5}$$+32 = 0+320+32


(ii) t(28)t(28) = 9×285+32\frac {9\times 28}{5}+32 = 252+1605\frac {252+160}{5} = 4125\frac {412}{5}


(iii) t(10)t(-10) = 9×(10)5+32\frac {9\times (-10)}{5}+32 = 9×(2)+329\times (-2)+32 = 18+32-18+32 = 14


(iv) It is given that t(C) = 212

212=9C5+32212 = \frac {9C}{5} +32

9C5=21232\frac {9C}{5}=212 - 32

9C5=180\frac {9C}{5}=180

9C=180×59C=180\times 5

C=180×59C = \frac {180 \times 5}{9}

C=100C = 100

Thus the value of t when t(C) = 212 is 100.