Solveeit Logo

Question

Question: The function \(\sin^{4}x + \cos^{4}x\) increase if...

The function sin4x+cos4x\sin^{4}x + \cos^{4}x increase if

A

0<x<π80 < x < \frac{\pi}{8}

B

π4<x<3π8\frac{\pi}{4} < x < \frac{3\pi}{8}

C

3π8<x<5π8\frac{3\pi}{8} < x < \frac{5\pi}{8}

D

5π8<x<3π4\frac{5\pi}{8} < x < \frac{3\pi}{4}

Answer

π4<x<3π8\frac{\pi}{4} < x < \frac{3\pi}{8}

Explanation

Solution

f(x)=sin4x+cos4xf(x) = \sin^{4}x + \cos^{4}x= (sin2x+cos2x)22sin2xcos2x(\sin^{2}x + \cos^{2}x)^{2} - 2\sin^{2}x\cos^{2}x

=14sin2xcos2x2=1sin22x2=114(2sin22x)= 1 - \frac{4\sin^{2}x\cos^{2}x}{2} = 1 - \frac{\sin^{2}2x}{2} = 1 - \frac{1}{4}(2\sin^{2}2x)

=1(1cos4x4)=34+14cos4x= 1 - \left( \frac{1 - \cos 4x}{4} \right) = \frac{3}{4} + \frac{1}{4}\cos 4x

Hence function f(x)f(x) is increasing when f(x)>0f^{'}(x) > 0

f(x)=sin4x>0f^{'}(x) = - \sin 4x > 0sin4x<0\sin 4x < 0

Hence π<4x<3π2\pi < 4x < \frac{3\pi}{2} or π4<x<3π8\frac{\pi}{4} < x < \frac{3\pi}{8}.