Solveeit Logo

Question

Mathematics Question on Maxima and Minima

The function sinx+cosx\sin \, x + \cos \, x is maximum when xx is equal to

A

π6\frac{\pi}{6}

B

π4\frac{\pi}{4}

C

π3\frac{\pi}{3}

D

π2\frac{\pi}{2}

Answer

π4\frac{\pi}{4}

Explanation

Solution

Let y=sinx+cosxy=\sin x+\cos x
=2(sinx+cosx2)=\sqrt{2}\left(\frac{\sin x+\cos x}{\sqrt{2}}\right)
=2(sin(π4+x))=\sqrt{2}\left(\sin \left(\frac{\pi}{4}+x\right)\right)
Here, yy will be maximum when (sin(π4+x))=1\left(\sin \left(\frac{\pi}{4}+x\right)\right)=1
But, sinπ2=1\sin \frac{\pi}{2}=1
So, π4+x=π2\frac{\pi}{4}+x=\frac{\pi}{2}
Hence, x=π4x=\frac{\pi}{4}