Solveeit Logo

Question

Question: The function sin wt – cos wt represents...

The function sin wt – cos wt represents

A

A simple harmonic motion with a period πω\frac{\pi}{\omega}

B

A simple harmonic motion with a period 2πω\frac{2\pi}{\omega}

C

A periodic, but not simple harmonic motion with a period πω\frac{\pi}{\omega}

D

A periodic, but not simple harmonic motion with a period 2πω\frac{2\pi}{\omega}

Answer

A simple harmonic motion with a period 2πω\frac{2\pi}{\omega}

Explanation

Solution

sinωtcosεt=2(12sinωt12cosωt)\sin\omega t - \cos\varepsilon t = \sqrt{2}\left( \frac{1}{\sqrt{2}}\sin\omega t - \frac{1}{\sqrt{2}}\cos\omega t \right)

=2(sinωtcosπ4cosωtsinπ4)= \sqrt{2}\left( \sin\omega t\cos\frac{\pi}{4} - \cos\omega t\sin\frac{\pi}{4} \right)

=2sin(ωtπ4)= \sqrt{2}\sin\left( \omega t - \frac{\pi}{4} \right)

It represents SHM with a period 2πω\frac{2\pi}{\omega}