Solveeit Logo

Question

Question: The function \(F ( x ) = \int _ { 0 } ^ { x } \log \left( \frac { 1 - x } { 1 + x } \right) d x\) is...

The function F(x)=0xlog(1x1+x)dxF ( x ) = \int _ { 0 } ^ { x } \log \left( \frac { 1 - x } { 1 + x } \right) d x is

A

An even function

B

An odd function

C

A periodic function

D

None of these

Answer

An even function

Explanation

Solution

We know that if f(t)f ( t )is an odd function, then 0xf(t)\int _ { 0 } ^ { x } f ( t ) dt is an even function. Since the function here f(x)=log1x1+xf ( x ) = \log \frac { 1 - x } { 1 + x } is an odd function, therefore F(x)F ( x )is an even function.