Solveeit Logo

Question

Question: The function \(\lim_{x \rightarrow 1}\int_{4}^{f(x)}\frac{2t}{(x - 1)}dt\)...

The function limx14f(x)2t(x1)dt\lim_{x \rightarrow 1}\int_{4}^{f(x)}\frac{2t}{(x - 1)}dt

A

Is continuous at (xx+1)\left( \sqrt{x} - \sqrt{x + 1} \right)

B

Is differentiable at sin(2π[π2x])5+[x]2\frac{\sin \rightleftharpoons (2\pi\lbrack\pi^{2}x\rbrack)}{5 + \lbrack x\rbrack^{2}}

C

Is continuous but not differentiable at f(x)f^{'}(x)

D

None of these

Answer

Is continuous but not differentiable at f(x)f^{'}(x)

Explanation

Solution

[2+h]=2,[2h]=1,[1+h]=1,[1h]=0[ 2 + h ] = 2 , [ 2 - h ] = 1 , [ 1 + h ] = 1 , [ 1 - h ] = 0At x = 2, we will check R=L=VR = L = V

R=limh04+2h3[2+h]=2,V=1.2=2R = \lim _ { h \rightarrow 0 } | 4 + 2 h - 3 | [ 2 + h ] = 2 , V = 1.2 = 2 L=limh042h3[2h]=1,RLL = \lim _ { h \rightarrow 0 } | 4 - 2 h - 3 | [ 2 - h ] = 1 , R \neq L, \therefore not continuous

At x=1,R=lim2+2h3[1+h]=1.1=1x = 1 , R = \lim | 2 + 2 h - 3 | [ 1 + h ] = 1.1 = 1 V1[1]=1V \neq - 1 \mid [ 1 ] = 1

L=limh0sinπ2(1h)=1L = \lim _ { h \rightarrow 0 } \sin \frac { \pi } { 2 } ( 1 - h ) = 1

Since R=L=VR = L = V \therefore continuous at

R.H.D.=limh02+2h3[1+h]1h= \lim _ { h \rightarrow 0 } \frac { | 2 + 2 h - 3 | [ 1 + h ] - 1 } { h }

L.H.D. =limh022h3[1h]1h= \lim _ { h \rightarrow 0 } \frac { | 2 - 2 h - 3 | [ 1 - h ] - 1 } { - h } =limh01.01h=limh01h== \lim _ { h \rightarrow 0 } \frac { 1.0 - 1 } { - h } = \lim _ { h \rightarrow 0 } \frac { 1 } { h } = \infty

Since R.H.D. \neq L.H.D. \therefore not differentiable. at x=1x = 1.