Solveeit Logo

Question

Question: The function \(\lim_{x \rightarrow 1}f(x) = 2\) is not defined at \(\lim_{x \rightarrow 1}f(x)\). Th...

The function limx1f(x)=2\lim_{x \rightarrow 1}f(x) = 2 is not defined at limx1f(x)\lim_{x \rightarrow 1}f(x). The value which should be assigned to f at x = 0 so that it is continuous at x = 0, is

A

limx0xx=\lim_{x \rightarrow 0}\frac{|x|}{x} =

B

limx1(3x2+4x+5)=\lim_{x \rightarrow 1}(3x^{2} + 4x + 5) =

C

limxaxnanxa\lim_{x \rightarrow a}\frac{x^{n} - a^{n}}{x - a}

D

nan1na^{n - 1}

Answer

limx1(3x2+4x+5)=\lim_{x \rightarrow 1}(3x^{2} + 4x + 5) =

Explanation

Solution

Since limit of a function is a+ba + b as x0x \rightarrow 0, therefore to be continuous at x=0x = 0, its value must be a+ba + b at

x=0f(0)=a+bx = 0 \Rightarrow f ( 0 ) = a + b.