Solveeit Logo

Question

Mathematics Question on Functions

The function is f(x)=12cos3x,x[0,π3],f(x)=\frac{1}{2-\cos \,3x},\,x\,\in \left[ 0,\frac{\pi }{3} \right], is

A

one-one, but not onto

B

onto, but not one-one

C

one-one as well as onto

D

neither one-one nor onto

Answer

one-one as well as onto

Explanation

Solution

Given, f(x)=12cos3x,x[0,π3]f(x)=\frac{1}{2-\cos \,3x},\,x\,\in \left[ 0,\frac{\pi }{3} \right] For one - one Let f(x1)=f(x2)f({{x}_{1}})=f({{x}_{2}})
\Rightarrow 12cos3x1=12cos3x2\frac{1}{2-\cos \,3{{x}_{1}}}=\frac{1}{2-\cos \,3\,{{x}_{2}}}
\Rightarrow 2cos3x1=2cos3x22-\cos \,3{{x}_{1}}=2-\cos \,3{{x}_{2}}
\Rightarrow cos3x1=cos3x2x1=x2\cos \,3{{x}_{1}}=\cos \,3{{x}_{2}}\,\,\Rightarrow \,\,{{x}_{1}}={{x}_{2}}
\Rightarrow f is one-one For onto Let y=f(x),yy=f(x),\,\,y\,\,\in codomain
\Rightarrow y=12cos3xy=\frac{1}{2-\cos \,3x}
\Rightarrow y(2cos3x)=1y(2-\cos \,3x)=1
\Rightarrow 2cos3x=1y2-\cos \,3x=\frac{1}{y}
\Rightarrow cos3x=21y\cos \,3x=2-\frac{1}{y}
\Rightarrow x=13cos1(21y)x=\frac{1}{3}\,{{\cos }^{-1}}\left( 2-\frac{1}{y} \right)
Here, for all yy\,\in codomain there exist xx\,\in domain. so f(x)f(x) is onto.
Here for all yEy\,E codomain there exist xx\,\in domain. so is on to. f(x)f(x)