Question
Question: The function \(f ( x ) = \frac { x } { 1 + x \tan x }\)has...
The function f(x)=1+xtanxxhas
A
One point of minimum in the interval (0, π/2)
B
One point of maximum in the interval (0, π/2)
C
No point of maximum, no point of minimum in the
interval (0, π/2)
D
) Two points of maxima in the interval (0, π/2)
Answer
One point of maximum in the interval (0, π/2)
Explanation
Solution
g(x)=f(x)1=x1+tanx
When g(x) has minimum f(x) has maximum g′(x)=−x21+sec2x
For maxima & minima
g′(x)=0 ⇒ sec2x=x21 ⇒ cos2x=x2
⇒ cosx=x or cosx=−x
g′′(x)=x32+2sec2xtanx
g′′(x)=+ve so, only one minimum for g(x) in the interval (0,2π)
⇒ only one maximum for f(x) in the interval (0,2π) .
So, 'b' is correct.
