Solveeit Logo

Question

Question: The function \(f ( x ) = \frac { x } { 1 + x \tan x }\)has...

The function f(x)=x1+xtanxf ( x ) = \frac { x } { 1 + x \tan x }has

A

One point of minimum in the interval (0, π/2)

B

One point of maximum in the interval (0, π/2)

C

No point of maximum, no point of minimum in the

interval (0, π/2)

D

) Two points of maxima in the interval (0, π/2)

Answer

One point of maximum in the interval (0, π/2)

Explanation

Solution

g(x)=1f(x)=1x+tanxg ( x ) = \frac { 1 } { f ( x ) } = \frac { 1 } { x } + \tan x

When g(x)g ( x ) has minimum f(x)f ( x ) has maximum g(x)=1x2+sec2xg ^ { \prime } ( x ) = - \frac { 1 } { x ^ { 2 } } + \sec ^ { 2 } x

For maxima & minima

g(x)=0g ^ { \prime } ( x ) = 0sec2x=1x2\sec ^ { 2 } x = \frac { 1 } { x ^ { 2 } }cos2x=x2\cos ^ { 2 } x = x ^ { 2 }

cosx=x\cos x = x or cosx=x\cos x = - x

g(x)=2x3+2sec2xtanxg ^ { \prime \prime } ( x ) = \frac { 2 } { x ^ { 3 } } + 2 \sec ^ { 2 } x \tan x

g(x)=+veg ^ { \prime \prime } ( x ) = + v e so, only one minimum for g(x)g ( x ) in the interval (0,π2)\left( 0 , \frac { \pi } { 2 } \right)

⇒ only one maximum for f(x)f ( x ) in the interval (0,π2)\left( 0 , \frac { \pi } { 2 } \right) .

So, 'b' is correct.