Solveeit Logo

Question

Question: The function g(x) = \(e ^ { x ^ { 2 } }\) \(\frac{\log(\pi + x)}{\log(e + x)}\) ( x ³ 0) is...

The function g(x) = ex2e ^ { x ^ { 2 } } log(π+x)log(e+x)\frac{\log(\pi + x)}{\log(e + x)} ( x ³ 0) is

A

Increasing on [0, )

B

Decreasing on [0, )

C

Increasing on [0, p/e) and decreasing on [p/e, )

D

Decreasing on [0, p/e) and increasing on [p/e, )

Answer

Decreasing on [0, )

Explanation

Solution

Since ex2e^{x^{2}}increases on [0, ) so it is enough to consider

f(x) = log(π+x)log(e+x)\frac{\log(\pi + x)}{\log(e + x)}

f¢(x) =

= log(e+x)×(e+x)(π+x)log(π+x)(π+x)(e+x)(log(e+x))2\frac { \log ( e + x ) \times ( e + x ) - ( \pi + x ) \log ( \pi + x ) } { ( \pi + x ) ( e + x ) ( \log ( e + x ) ) ^ { 2 } }

Since log function is an increasing function and

e < p, log (e + x) < log (p+ x)

Thus (e + x) log (e + x) < (e + x) log (p + x) < (p + x) log (p + x) for all x > 0.

Thus, f¢(x) < 0 for " x > 0 Ž f(x) decreases on (0, )