Solveeit Logo

Question

Question: The function \[g\left( x \right) = {e^{{x^2}}}\dfrac{{\log \left( {\pi + x} \right)}}{{\log \left( {...

The function g(x)=ex2log(π+x)log(e+x)(x0)g\left( x \right) = {e^{{x^2}}}\dfrac{{\log \left( {\pi + x} \right)}}{{\log \left( {e + x} \right)}}\left( {x \geqslant 0} \right) is
(a) Increasing on [0,)\left( a \right){\text{ Increasing on [0,}} \propto )
(b) Decreasing on [0,)\left( b \right){\text{ Decreasing on [0,}} \propto )
(c) Increasing on [0,π/e) and decreasing on [π/e,)\left( c \right){\text{ Increasing on [0,}}\pi {\text{/e}}){\text{ and decreasing on [}}\pi {\text{/e,}} \propto {\text{)}}
(d) Decreasing on [0,π/e) and increasing on [π/e,)\left( d \right){\text{ Decreasing on [0,}}\pi {\text{/e}}){\text{ and increasing on [}}\pi {\text{/e,}} \propto {\text{)}}

Explanation

Solution

Hint : Here finding whether the function is increasing and decreasing at what interval, we will differentiate the f(x)=log(π+x)log(e+x)f\left( x \right) = \dfrac{{\log \left( {\pi + x} \right)}}{{\log \left( {e + x} \right)}} and by solving it we will get the function which will be then compared with the limit. Also, we know that the log\log function is an increasing function. So by all of these, we can tell the condition of the function.

Complete step-by-step answer :
Since, we know that the function ex2{e^{{x^2}}} increases on [0,){\text{[0,}} \propto ) so we will consider the function,
f(x)=log(π+x)log(e+x)\Rightarrow f\left( x \right) = \dfrac{{\log \left( {\pi + x} \right)}}{{\log \left( {e + x} \right)}}
Now on differentiating this above function with respect to xx , we get the function f(x)f'\left( x \right) as
f(x)=log(e+x)×1π+xlog(π+x)×1e+x(log(e+x))2\Rightarrow f'\left( x \right) = \dfrac{{\log \left( {e + x} \right) \times \dfrac{1}{{\pi + x}} - log\left( {\pi + x} \right) \times \dfrac{1}{{e + x}}}}{{{{\left( {\log \left( {e + x} \right)} \right)}^2}}}
So on solving the above function, we will get the function as
f(x)=log(e+x)×(e+x)(π+x)×log(π+x)(log(e+x))2\Rightarrow f'\left( x \right) = \dfrac{{\log \left( {e + x} \right) \times \left( {e + x} \right) - \left( {\pi + x} \right) \times log\left( {\pi + x} \right)}}{{{{\left( {\log \left( {e + x} \right)} \right)}^2}}}
Also from the hint, we knew that the log\log function is an increasing function, so to represent it mathematically we can write it as e<π,log(e+x)<log(π+x)e < \pi ,\log \left( {e + x} \right) < \log \left( {\pi + x} \right)
Therefore from this (e+x)log(e+x)<(e+x)log(π+x)<(π+x)log(π+x)\left( {e + x} \right)\log \left( {e + x} \right) < \left( {e + x} \right)\log \left( {\pi + x} \right) < \left( {\pi + x} \right)\log \left( {\pi + x} \right) for all the value of x>0x > 0 .
Therefore, from the above, we can say that the function f(x)<0f'\left( x \right) < 0 and will be for all the values of x>0x > 0 .
So we can say that the f(x)f\left( x \right) decreases in the interval (0,)\left( {0, \propto } \right)
Therefore, the option (b)\left( b \right) will be decreasing in the interval [0,){\text{[0,}} \propto ) .
So, the correct answer is “Option b”.

Note : When we have the question like increasing or decreasing then the derivative of a function can be used to find it for any intervals in its domain. So if f(x)>0f'\left( x \right) > 0 in an interval at each of the points then we can say that the function will be said to be increasing. And for any intervals in its domain if f(x)<0f'\left( x \right) < 0 in an interval at each of the points then we can say that the function will be said to be decreasing. And this info will help you while finding such problems.