Solveeit Logo

Question

Question: The function \(f(x) = x(x + 3)e^{- 1/2x}\) satisfies all the condition of Rolle's theorem in [– 3, 0...

The function f(x)=x(x+3)e1/2xf(x) = x(x + 3)e^{- 1/2x} satisfies all the condition of Rolle's theorem in [– 3, 0]. The value of cis

A

0

B

1

C

– 2

D

– 3

Answer

– 2

Explanation

Solution

To determine 'c' in Rolle's theorem, f(c)=0f^{'}(c) = 0

Here f(x)=(x2+3x)e(1/2)x.(12)+(2x+3)e(1/2)xf^{'}(x) = (x^{2} + 3x)e^{- (1/2)x}.\left( - \frac{1}{2} \right) + (2x + 3)e^{- (1/2)x}

= e(1/2)x{12(x2+3x)+2x+3}e^{- (1/2)x}\left\{ - \frac{1}{2}(x^{2} + 3x) + 2x + 3 \right\} = 12e(x/2){x2x6}- \frac{1}{2}e^{- (x/2)}\left\{ x^{2} - x - 6 \right\}

\therefore f(c)=0f^{'}(c) = 0c2c6=0c^{2} - c - 6 = 0c=3,2c = 3, - 2.

But c=3[3,0]c = 3 \notin \lbrack - 3,0\rbrack, Hence c = –2.