Question
Question: The function f(x) = [x]<sup>2</sup>− [x<sup>2</sup>] (where [y] is the greatest integer less than or...
The function f(x) = [x]2− [x2] (where [y] is the greatest integer less than or equal to y), is discontinuous at
A
All integers
B
All integers
C
All integers except 0
D
All integers except
Answer
All integers except
Explanation
Solution
We have f(x) = [x]2 – [x]2
At x = 0, L.H.L. = limh→0f(−h)limh→0[−h]2−[(−h)2]
limh→0f(−1)2[h]2=limh→01−0=1
R.H.L. = limh→0f(h)=limh→0[h]2−[h]2=limh→00−0=0
∴ L.H.L ≠ R.H.L. ∴ f(x) is not continuous at x = 0.
At x = 1, L.H.L., limh→0f(1−h)=limh→0[1−h]2−[(1−h)2]
= limh→00−0=0
R.H.L. = limh→0f(1+h)=limh→0[1+h]2−[(1+h)2]
= limh→00−0=0
f(1) = [1]2 − [1]2 = 1 − 1 = 0
∴ L.H.L. = R.H.L. = f(1) ∴ f(x) is continuous at x = 1.