Question
Question: The function f(x) = (x<sup>2</sup>− 1) \|x<sup>2</sup>− 3x + 2\| + cos (\|x\|) is NOT differentiable...
The function f(x) = (x2− 1) |x2− 3x + 2| + cos (|x|) is NOT differentiable at
A
−1
B
0
C
1
D
2
Answer
2
Explanation
Solution
We have |x| = $\left{ \begin{matrix}
- xif & x < 0 \ xif & x \geq 0 \end{matrix} \right.\ $
⇒ |x2 − 3x + 2| = |(x − 1)(x − 2)|
=⎩⎨⎧(x−1)(x−2)if(x−1)(2−x)if(x−1)(x−2)ifx≤11<x≤2x≥0
As cos (−θ) = cos θ ⇒ cos |x| = cos x
∴ Given function can be written as
∴ $\left{ \begin{matrix} \left( x^{2} - 1 \right)(x - 1)(x - 2) + \cos xif \
- \left( x^{2} - 1 \right)(x - 1)(x - 2) + \cos xif \ \left( x^{2} - 1 \right)(x - 1)(x - 2) + \cos xif \end{matrix}\begin{matrix} x \leq 1 \ 1 < x \leq 2 \ x > 2 \end{matrix} \right.\ $
This function is differentiable at all points except possibly at x = 1 and x = 2.
Lf’(1) = {dxd[(x2−1)(x−1)(x−2)+cosx]}x=1= − sin 1
Rf’(1) = {dxd(−(x2−1)(x−1)(x−2)+cosx)}x=1= − sin 1
∴ Lf’(1) = Rf’(1) ∴ f is differentiable at x = 1.
Lf′(2)={dxd(−(x2−1)(x−1)(x−2)+cosx)}x=2
Rf′(2)={dxd((x2−1)(x−1)(x−2)+cosx)}x=2
∴ Lf’(2) ≠ Rf’(2) ∴ f is not differentiable at x = 2.