Solveeit Logo

Question

Question: The function f(x) = [x] cos\(\frac{1}{x - \lbrack x\rbrack}\)π, (where [.] denotes the greatest inte...

The function f(x) = [x] cos1x[x]\frac{1}{x - \lbrack x\rbrack}π, (where [.] denotes the greatest integer function) is discontinuous at –

A

All x

B

x = [x]x\lbrack x\rbrack - x, n ∈ I – {1}

C

x ∈ N

D

x ∉ I – {0}

Answer

x = [x]x\lbrack x\rbrack - x, n ∈ I – {1}

Explanation

Solution

Case I : when x ∈ n,

then f(x) = x cos π

f(n) = n cos (n – 1)π

f(x) = n cos(n – 1)π

f(x) = (n – 1) cos(n – 1)π

limit exist if cos (n – 1)π = 0 which is not

possible.

f(x) is discontinuous at all x ∈ I.

Case II : when x is not integer

Let = m, m is integer, then

x = = m + 12\frac { 1 } { 2 }

limxm+1/2f(x)\lim _ { x \rightarrow m + 1 / 2 ^ { - } } f ( x ) = m cos (m – 1)π

= m cos mπ

limit exist only when m = 0 i.e. n = 12\frac { 1 } { 2 }

Hence discontinuous at x = n2\frac { \mathrm { n } } { 2 } , n ∈ I – {1}.