Solveeit Logo

Question

Question: The function f(x) = sin<sup>4</sup> x + cos <sup>4</sup> x increasing if –...

The function f(x) = sin4 x + cos 4 x increasing if –

A

0 < x <π/8

B

π/4 < x < 3π/8

C

3π/8 < x < 5π/8

D

5π/8 < x < 3π/4

Answer

π/4 < x < 3π/8

Explanation

Solution

Here, ƒ(x) = sin4 x + cos4 x

ƒ′(x) = 4 sin3 x . cos x + 4 cos3 x (– sin x)

ƒ′(x) = 4 sin x cos x (sin2 x – cos2 x)

ƒ′(x) = 2 (sin 2x) (– cos 2x)

ƒ′(x) = – sin 4x

Now, ƒ′(x) ≥ 0 if sin 4x ≤ 0

⇒ π ≤ 4x ≤ 2π 

⇒ π/4 ≤ x ≤ π/2

Here (2) is only subset of [π4,π2]\left\lbrack \frac{\pi}{4},\frac{\pi}{2} \right\rbrack

Therefore, (2) is the solution.