Solveeit Logo

Question

Question: The function f(x) = $(sin 2x)^{tan^2 2x}$ is not defined at x = π/4. The value of f(π/4) so that f i...

The function f(x) = (sin2x)tan22x(sin 2x)^{tan^2 2x} is not defined at x = π/4. The value of f(π/4) so that f is continuous at x = π/4, is

A

e\sqrt{e}

B

1/e\sqrt{e}

C

2

D

None of these

Answer

1/e\sqrt{e}

Explanation

Solution

We need to find

f(π4)=limxπ/4(sin2x)tan22x.f\left(\frac{\pi}{4}\right) = \lim_{x\to \pi/4} (\sin2x)^{\tan^2 2x}.

Taking the natural logarithm, let

y=(sin2x)tan22xlny=tan22xln(sin2x).y = (\sin2x)^{\tan^2 2x} \quad \Rightarrow \quad \ln y = \tan^2 2x \cdot \ln(\sin2x).

As xπ4x \to \frac{\pi}{4}, we have 2xπ22x \to \frac{\pi}{2}. Set

u=π22x,so that u0.u = \frac{\pi}{2} - 2x, \quad \text{so that } u \to 0.

Now, express the functions in terms of uu:

  • tan2x=tan(π2u)=cotu1u\tan2x = \tan\left(\frac{\pi}{2} - u\right) = \cot u \approx \frac{1}{u},
  • sin2x=sin(π2u)=cosu1u22\sin2x = \sin\left(\frac{\pi}{2} - u\right) = \cos u \approx 1 - \frac{u^2}{2},
  • Hence, ln(sin2x)ln(1u22)u22\ln(\sin2x) \approx \ln\left(1-\frac{u^2}{2}\right) \approx -\frac{u^2}{2}.

So,

tan22xln(sin2x)1u2(u22)=12.\tan^2 2x \cdot \ln(\sin2x) \approx \frac{1}{u^2} \left(-\frac{u^2}{2}\right) = -\frac{1}{2}.

Thus, taking the limit,

lny12ye1/2=1e.\ln y \to -\frac{1}{2} \quad \Rightarrow \quad y \to e^{-1/2} = \frac{1}{\sqrt{e}}.

Core Explanation

Let y=(sin2x)tan22xy=(\sin 2x)^{\tan^2 2x}. Taking lny\ln y gives tan2(2x)ln(sin2x)\tan^2(2x) \ln(\sin2x). Near x=π/4x=\pi/4, set u=π/22xu=\pi/2-2x: then tan2x1/u\tan2x\approx1/u and ln(sin2x)u2/2\ln(\sin2x)\approx -u^2/2, so product 1/2\approx -1/2. Thus, ye1/2=1ey\to e^{-1/2}=\frac{1}{\sqrt{e}}.