Solveeit Logo

Question

Question: The function f(x) = \(\lim_{x \rightarrow \pi/6}\left\lbrack \frac{3\sin x - \sqrt{3}\cos x}{6x - \p...

The function f(x) = limxπ/6[3sinx3cosx6xπ]\lim_{x \rightarrow \pi/6}\left\lbrack \frac{3\sin x - \sqrt{3}\cos x}{6x - \pi} \right\rbrackis not defined at x = π/4. The value of f(π/4) so that f is continuous at x = π/4 is –

A

3\sqrt{3}

B

1/13\frac{1}{\sqrt{3}}

C

2

D

None of these

Answer

1/13\frac{1}{\sqrt{3}}

Explanation

Solution

f(π4)\left( \frac { \pi } { 4 } \right) = limxπ4(sin2x)tan22x\lim _ { x \rightarrow \frac { \pi } { 4 } } ( \sin 2 x ) ^ { \tan ^ { 2 } 2 x }

= limxπ4etan22x(sin2x1)\lim _ { x \rightarrow \frac { \pi } { 4 } } e ^ { \tan ^ { 2 } 2 x ( \sin 2 x - 1 ) } = limxπ4esin2x1cot22x\lim _ { x \rightarrow \frac { \pi } { 4 } } e ^ { \frac { \sin 2 x - 1 } { \cot ^ { 2 } 2 x } } , 00\frac { 0 } { 0 }

= limxπ4e2cos2x02cot2x(cosec22x)2\lim _ { x \rightarrow \frac { \pi } { 4 } } e ^ { \frac { 2 \cos 2 x - 0 } { 2 \cot 2 x \left( - \operatorname { cosec } ^ { 2 } 2 x \right) \cdot 2 } } = limxπ4esin2x2\lim _ { x \rightarrow \frac { \pi } { 4 } } e ^ { \frac { - \sin 2 x } { 2 } } = e–1/2