Solveeit Logo

Question

Question: The function f(x) = \(\left| \frac{x^{2} - 2}{x^{2} - 4} \right|\)has...

The function f(x) = x22x24\left| \frac{x^{2} - 2}{x^{2} - 4} \right|has

A

No point of local minima

B

No point of local maxima

C

Exactly one point of local minima

D

) Exactly one point of local maxima

Explanation

Solution

)

Sol. For y =x22x24,dydx=4x(x24)2\frac { x ^ { 2 } - 2 } { x ^ { 2 } - 4 } , \frac { d y } { d x } = \frac { - 4 x } { \left( x ^ { 2 } - 4 \right) ^ { 2 } }

dydx\frac { d y } { d x } > 0 for x < 0 and dydx\frac { d y } { d x } < 0 for x > 0. Then x = 0 is the point of local maxima for y. Now yx=0=12\left. y \right| _ { x = 0 } = \frac { 1 } { 2 } (positive). Thus x = 0 is also the point of local maxima for y=x22x24y = \left| \frac { x ^ { 2 } - 2 } { x ^ { 2 } - 4 } \right|