Solveeit Logo

Question

Question: The function \(f(x) = \left\{ \begin{matrix} mx^{2},x \leq 1 \\ 2x,x > 1 \end{matrix} \right.\ \) is...

The function f(x)={mx2,x12x,x>1 f(x) = \left\{ \begin{matrix} mx^{2},x \leq 1 \\ 2x,x > 1 \end{matrix} \right.\ is

A

Continuous everywhere but not differentiable at x=1x = 1

B

Continuous and differentiable everywhere

C

Not continuous at f(x)={(cosx)1/x,x0k,x=0 f(x) = \left\{ \begin{matrix} (\cos x)^{1/x},x \neq 0 \\ k,x = 0 \end{matrix} \right.\

D

None of these

Answer

Continuous everywhere but not differentiable at x=1x = 1

Explanation

Solution

We have,

Clearly, f(x)f ( x ) is continuous and differentiable for all non-zero x.

Now, limx0f(x)=limx0ex\lim _ { x \rightarrow 0 ^ { - } } f ( x ) = \lim _ { x \rightarrow 0 } e ^ { x }= 1 and limx0+f(x)=limx0ex=1\lim _ { x \rightarrow 0 ^ { + } } f ( x ) = \lim _ { x \rightarrow 0 } e ^ { - x } = 1

Also, f(0)=e0=1f ( 0 ) = e ^ { 0 } = 1

So, f(x)f ( x ) is continuous for all x.

(LHD at x=0x = 0) = (ddx(ex))x=0=[ex]x=0=e0=1\left( \frac { d } { d x } \left( e ^ { x } \right) \right) _ { x = 0 } = \left[ e ^ { x } \right] _ { x = 0 } = e ^ { 0 } = 1

(RHD at x=0x = 0) = (ddx(ex))x=0=[ex]x=0=1\left( \frac { d } { d x } \left( e ^ { - x } \right) \right) _ { x = 0 } = \left[ - e ^ { - x } \right] _ { x = 0 } = - 1

So, f(x)f ( x ) is not differentiable at x=0x = 0.

Hence, is everywhere continuous but not

differentiable at This fact is also evident from the graph of the function.