Solveeit Logo

Question

Question: The function \(f(x) = \frac{\log(\pi + x)}{\log(e + x)}(x \geq 0)\) is...

The function f(x)=log(π+x)log(e+x)(x0)f(x) = \frac{\log(\pi + x)}{\log(e + x)}(x \geq 0) is

A

Increasing on [0,)\lbrack 0,\infty)

B

Decreasing on [0,)\lbrack 0,\infty)

C

Increasing on [0,πe)\left\lbrack 0,\frac{\pi}{e} \right) and decreasing on [πe,)\left\lbrack \frac{\pi}{e},\infty \right)

D

Decreasing on [0,πe)\left\lbrack 0,\frac{\pi}{e} \right)and increasing on [πe,)\left\lbrack \frac{\pi}{e},\infty \right)

Answer

Decreasing on [0,)\lbrack 0,\infty)

Explanation

Solution

f(x)=log(e+x) x 1π+xlog(π+x)1e+x(log(e+x))2f'(x) = \frac{\log(e + x)\text{ x }\frac{1}{\pi + x} - \log(\pi + x)\frac{1}{e + x}}{\left( \log(e + x) \right)^{2}}= log(e+x) x (e+x)(π+x)log(π+x)(π+x)(e+x)(log(e+x))2\frac{\log(e + x)\text{ x }(e + x) - (\pi + x)\log(\pi + x)}{(\pi + x)(e + x)\left( \log(e + x) \right)^{2}}since log

function is an increasing function and e<π,log(e+x)<log(π+x)e < \pi,\log(e + x) < \log(\pi + x).

Thus(e+x)log(e+x)<(e+x)log(π+x)<(π+x)log(π+x)(e + x)\log(e + x) < (e + x)\log(\pi + x) < (\pi + x)\log(\pi + x) for all x>0x > 0.

Thus,f(x)<0f'(x) < 0 for x>0\forall x > 0f(x)f(x) decreases on [0,]\lbrack 0,\infty\rbrack