Question
Question: The function \(f(x) = \frac{\log(\pi + x)}{\log(e + x)}(x \geq 0)\) is...
The function f(x)=log(e+x)log(π+x)(x≥0) is
A
Increasing on [0,∞)
B
Decreasing on [0,∞)
C
Increasing on [0,eπ) and decreasing on [eπ,∞)
D
Decreasing on [0,eπ)and increasing on [eπ,∞)
Answer
Decreasing on [0,∞)
Explanation
Solution
f′(x)=(log(e+x))2log(e+x) x π+x1−log(π+x)e+x1= (π+x)(e+x)(log(e+x))2log(e+x) x (e+x)−(π+x)log(π+x)since log
function is an increasing function and e<π,log(e+x)<log(π+x).
Thus(e+x)log(e+x)<(e+x)log(π+x)<(π+x)log(π+x) for all x>0.
Thus,f′(x)<0 for ∀x>0 ⇒ f(x) decreases on [0,∞]