Solveeit Logo

Question

Question: The function \(f(x) = \frac{\ln(\pi + x)}{\ln(e + x)}\) is...

The function f(x)=ln(π+x)ln(e+x)f(x) = \frac{\ln(\pi + x)}{\ln(e + x)} is

A

Increasing on [0, ∞)

B

Decreasing on [0, ∞)

C

Decreasing on [0,πe)\left\lbrack 0,\frac{\pi}{e} \right) and increasing on [πe,)\left\lbrack \frac{\pi}{e},\infty \right)

D

Increasing on [0,πe)\left\lbrack 0,\frac{\pi}{e} \right) and decreasing on [πe,)\left\lbrack \frac{\pi}{e},\infty \right)

Answer

Decreasing on [0, ∞)

Explanation

Solution

Let f(x)=ln(π+x)ln(e+x)f(x) = \frac{\ln(\pi + x)}{\ln(e + x)}

\therefore f(x)=ln(e+x)×1π+xln(π+x)1e+xln2(e+x)f^{'}(x) = \frac{\ln(e + x) \times \frac{1}{\pi + x} - \ln(\pi + x)\frac{1}{e + x}}{\ln^{2}(e + x)}

= (e+x)ln(e+x)(π+x)ln(π+x){ln(e+x)}2×(e+x)(π+x)\frac{(e + x)\ln(e + x) - (\pi + x)\ln(\pi + x)}{\{\ln(e + x)\}^{2} \times (e + x)(\pi + x)}

f(x)<0f^{'}(x) < 0 for all x0x \geq 0 {π>e}\{\because\pi > e\}

Hence, f(x)f(x) is decreasing in [0,)\lbrack 0,\infty).