Question
Question: The function \(f(x) = \frac{\ln(\pi + x)}{\ln(e + x)}\) is...
The function f(x)=ln(e+x)ln(π+x) is
A
Increasing on [0, ∞)
B
Decreasing on [0, ∞)
C
Decreasing on [0,eπ) and increasing on [eπ,∞)
D
Increasing on [0,eπ) and decreasing on [eπ,∞)
Answer
Decreasing on [0, ∞)
Explanation
Solution
Let f(x)=ln(e+x)ln(π+x)
∴ f′(x)=ln2(e+x)ln(e+x)×π+x1−ln(π+x)e+x1
= {ln(e+x)}2×(e+x)(π+x)(e+x)ln(e+x)−(π+x)ln(π+x)
⇒ f′(x)<0 for all x≥0 {∵π>e}
Hence, f(x) is decreasing in [0,∞).