Solveeit Logo

Question

Question: The function f(x) \(\frac{5^{n + 1} + 3^{n} - 3^{2n}}{5^{n} + 2^{n} + 3^{2n + 3}}\) is continuous at...

The function f(x) 5n+1+3n32n5n+2n+32n+3\frac{5^{n + 1} + 3^{n} - 3^{2n}}{5^{n} + 2^{n} + 3^{2n + 3}} is continuous at x = 0 if

A

a = 0

B

a = 3/5

C

a = 2

D

a = limx0f(x2)f(x)f(x)f(0)\lim_{x \rightarrow 0}\frac{f(x^{2}) - f(x)}{f(x) - f(0)}

Answer

a = 3/5

Explanation

Solution

lx0[sinx1/3x1/3×log(1+3x)3x×(xtan1x)2×5x3e5x31×35]\operatorname { l } _ { x \rightarrow 0 } \left[ \frac { \sin x ^ { 1 / 3 } } { x ^ { 1 / 3 } } \times \frac { \log ( 1 + 3 x ) } { 3 x } \times \left( \frac { \sqrt { x } } { \tan ^ { - 1 } \sqrt { x } } \right) ^ { 2 } \times \frac { 5 \cdot \sqrt [ 3 ] { x } } { e ^ { 5 \cdot \sqrt [ 3 ] { x } } - 1 } \times \frac { 3 } { 5 } \right]

= 1 × 1 × (1)2 × 35\frac { 3 } { 5 }×1 = 35\frac { 3 } { 5 }