Solveeit Logo

Question

Question: The function \(f(x) = \frac{1 - \sin x + \cos x}{1 + \sin x + \cos x}\) is not defined at \(x = \pi....

The function f(x)=1sinx+cosx1+sinx+cosxf(x) = \frac{1 - \sin x + \cos x}{1 + \sin x + \cos x} is not defined at x=π.x = \pi. The value of f(π),f(\pi), so that f(x)f(x) is continuous at x=πx = \pi, is

A

12- \frac{1}{2}

B

12\frac{1}{2}

C

– 1

D

1

Answer

– 1

Explanation

Solution

limxπf(x)=limxπ2cos2x22sinx2cosx22cos2x2+2sinx2cosx2\lim_{x \rightarrow \pi}f(x) = \lim_{x \rightarrow \pi}\frac{2\cos^{2}\frac{x}{2} - 2\sin\frac{x}{2}\cos\frac{x}{2}}{2\cos^{2}\frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2}}

=limxπcosx2sinx2cosx2+sinx2=limxπtan(π4x2)= \lim_{x \rightarrow \pi}\frac{\cos\frac{x}{2} - \sin\frac{x}{2}}{\cos\frac{x}{2} + \sin\frac{x}{2}} = \lim_{x \rightarrow \pi}\tan\left( \frac{\pi}{4} - \frac{x}{2} \right) x21>0x ^ { 2 } - 1 > 0 At

x=π,f(π)=tanπ4=1x = \pi,f(\pi) = - \tan\frac{\pi}{4} = - 1.