Solveeit Logo

Question

Question: The function f(x) = \(\frac { \ell \mathrm { n } ( \pi + x ) } { \ell \mathrm { n } ( e + x ) }\) ,...

The function f(x) = n(π+x)n(e+x)\frac { \ell \mathrm { n } ( \pi + x ) } { \ell \mathrm { n } ( e + x ) } , x ≥ 0 is

A

Increasing on and decreasing on

B

Decreasing on [0,πe)\left[ 0 , \frac { \pi } { e } \right) and increasing on [πe,)\left[ \frac { \pi } { e } , \infty \right)

C

Increasing on [0, ∞)

D

Decreasing on [0, ∞)

Answer

Decreasing on [0, ∞)

Explanation

Solution

f '(x) =

Now π + x > e + x ⇒ ln(e+xπ+x)\ln \left( \frac { e + x } { \pi + x } \right) < 0 f '(x) < 0

thus f(x) is decreasing.