Solveeit Logo

Question

Question: The function $f(x) = ||e^x -1| -1|$ is:...

The function f(x)=ex11f(x) = ||e^x -1| -1| is:

A

Continuous for all xx

B

Differentiable for all xx

C

Not continuous at x=0,ln2x = 0, \ln 2

D

Not differentiable at x=ln2x = \ln 2

Answer

Continuous for all x, Not differentiable at x = ln 2

Explanation

Solution

To analyze the function f(x)=ex11f(x) = ||e^x -1| -1|, we will examine its continuity and differentiability by breaking it down into simpler components and considering the points where the arguments of the absolute value functions become zero.

Let's define the function piecewise.

Step 1: Analyze g(x)=ex1g(x) = e^x - 1.

The critical point for the inner absolute value is when ex1=0e^x - 1 = 0, which implies ex=1e^x = 1, so x=0x = 0.

Step 2: Analyze h(x)=ex1h(x) = |e^x - 1|.

h(x)={ex1if ex10    x0(ex1)if ex1<0    x<0h(x) = \begin{cases} e^x - 1 & \text{if } e^x - 1 \ge 0 \implies x \ge 0 \\ -(e^x - 1) & \text{if } e^x - 1 < 0 \implies x < 0 \end{cases}

h(x)={ex1if x01exif x<0h(x) = \begin{cases} e^x - 1 & \text{if } x \ge 0 \\ 1 - e^x & \text{if } x < 0 \end{cases}

Step 3: Analyze k(x)=ex11k(x) = |e^x - 1| - 1.

k(x)={(ex1)1if x0(1ex)1if x<0k(x) = \begin{cases} (e^x - 1) - 1 & \text{if } x \ge 0 \\ (1 - e^x) - 1 & \text{if } x < 0 \end{cases}

k(x)={ex2if x0exif x<0k(x) = \begin{cases} e^x - 2 & \text{if } x \ge 0 \\ -e^x & \text{if } x < 0 \end{cases}

The critical points for the outer absolute value are when k(x)=0k(x) = 0.

For x0x \ge 0: ex2=0    ex=2    x=ln2e^x - 2 = 0 \implies e^x = 2 \implies x = \ln 2. (Note: ln20.693\ln 2 \approx 0.693, which is 0\ge 0).

For x<0x < 0: ex=0-e^x = 0, which has no solution.

So, x=ln2x = \ln 2 is a critical point for the outer absolute value.

Step 4: Analyze f(x)=ex11=k(x)f(x) = ||e^x - 1| - 1| = |k(x)|.

We need to consider the sign of k(x)k(x) in different intervals.

  • For x<0x < 0: k(x)=exk(x) = -e^x. Since ex>0e^x > 0 for all xx, ex<0-e^x < 0. So, f(x)=ex=exf(x) = |-e^x| = e^x for x<0x < 0.
  • For x0x \ge 0: k(x)=ex2k(x) = e^x - 2.
    • If ex20    xln2e^x - 2 \ge 0 \implies x \ge \ln 2: f(x)=ex2f(x) = e^x - 2.
    • If ex2<0    x<ln2e^x - 2 < 0 \implies x < \ln 2: f(x)=(ex2)=2exf(x) = -(e^x - 2) = 2 - e^x.

Combining these, the piecewise definition of f(x)f(x) is:

f(x)={exif x<02exif 0x<ln2ex2if xln2f(x) = \begin{cases} e^x & \text{if } x < 0 \\ 2 - e^x & \text{if } 0 \le x < \ln 2 \\ e^x - 2 & \text{if } x \ge \ln 2 \end{cases}

Continuity Analysis:

  1. Continuity within intervals: Each piece (exe^x, 2ex2-e^x, ex2e^x-2) is an exponential or linear function, which are continuous on their respective intervals.

  2. Continuity at boundary points:

    • At x=0x = 0:

      f(0)=limx0ex=e0=1f(0^-) = \lim_{x \to 0^-} e^x = e^0 = 1.

      f(0+)=limx0+(2ex)=2e0=21=1f(0^+) = \lim_{x \to 0^+} (2 - e^x) = 2 - e^0 = 2 - 1 = 1.

      f(0)=2e0=1f(0) = 2 - e^0 = 1.

      Since f(0)=f(0+)=f(0)f(0^-) = f(0^+) = f(0), f(x)f(x) is continuous at x=0x=0.

    • At x=ln2x = \ln 2:

      f(ln2)=limxln2(2ex)=2eln2=22=0f(\ln 2^-) = \lim_{x \to \ln 2^-} (2 - e^x) = 2 - e^{\ln 2} = 2 - 2 = 0.

      f(ln2+)=limxln2+(ex2)=eln22=22=0f(\ln 2^+) = \lim_{x \to \ln 2^+} (e^x - 2) = e^{\ln 2} - 2 = 2 - 2 = 0.

      f(ln2)=eln22=0f(\ln 2) = e^{\ln 2} - 2 = 0.

      Since f(ln2)=f(ln2+)=f(ln2)f(\ln 2^-) = f(\ln 2^+) = f(\ln 2), f(x)f(x) is continuous at x=ln2x=\ln 2.

Since f(x)f(x) is continuous on all intervals and at the boundary points, it is continuous for all xRx \in \mathbb{R}.

Therefore, the statement "Continuous for all xx" is correct. The statement "Not continuous at x=0,ln2x = 0, \ln 2" is incorrect.

Differentiability Analysis:

We need to check differentiability at the boundary points x=0x=0 and x=ln2x=\ln 2.

First, let's find the derivative of each piece:

f(x)={exif x<0exif 0<x<ln2exif x>ln2f'(x) = \begin{cases} e^x & \text{if } x < 0 \\ -e^x & \text{if } 0 < x < \ln 2 \\ e^x & \text{if } x > \ln 2 \end{cases}

  1. At x=0x = 0:

    Left-hand derivative: f(0)=limx0ex=e0=1f'(0^-) = \lim_{x \to 0^-} e^x = e^0 = 1.

    Right-hand derivative: f(0+)=limx0+(ex)=e0=1f'(0^+) = \lim_{x \to 0^+} (-e^x) = -e^0 = -1.

    Since f(0)f(0+)f'(0^-) \neq f'(0^+), f(x)f(x) is not differentiable at x=0x=0.

  2. At x=ln2x = \ln 2:

    Left-hand derivative: f(ln2)=limxln2(ex)=eln2=2f'(\ln 2^-) = \lim_{x \to \ln 2^-} (-e^x) = -e^{\ln 2} = -2.

    Right-hand derivative: f(ln2+)=limxln2+(ex)=eln2=2f'(\ln 2^+) = \lim_{x \to \ln 2^+} (e^x) = e^{\ln 2} = 2.

    Since f(ln2)f(ln2+)f'(\ln 2^-) \neq f'(\ln 2^+), f(x)f(x) is not differentiable at x=ln2x=\ln 2.

Therefore, the statement "Differentiable for all xx" is incorrect. The statement "Not differentiable at x=ln2x = \ln 2" is correct.

Conclusion:

The function f(x)=ex11f(x) = ||e^x -1| -1| is:

  1. Continuous for all xx.
  2. Not differentiable at x=0x = 0 and x=ln2x = \ln 2.