Solveeit Logo

Question

Question: The function \(f(x) = \cos x - 2px\) is monotonically decreasing for...

The function f(x)=cosx2pxf(x) = \cos x - 2px is monotonically decreasing for

A

p<12p < \frac{1}{2}

B

p>12p > \frac{1}{2}

C

p<2p < 2

D

p>2p > 2

Answer

p>12p > \frac{1}{2}

Explanation

Solution

f(x)f(x) will be monotonically decreasing, if f(x)<0f^{'}(x) < 0.

f(x)=sinx2p<0f^{'}(x) = - \sin x - 2p < 012sinx+p>0\frac{1}{2}\sin x + p > 0p>12p > \frac{1}{2}

[1sinx1]\lbrack\because - 1 \leq \sin x \leq 1\rbrack