Solveeit Logo

Question

Question: The function $f(x)=\cos^{-1}\left(\frac{2\lfloor |\sin x|+|\cos x| \rfloor}{\sin^2 x+2\sin x+\frac{1...

The function f(x)=cos1(2sinx+cosxsin2x+2sinx+114)f(x)=\cos^{-1}\left(\frac{2\lfloor |\sin x|+|\cos x| \rfloor}{\sin^2 x+2\sin x+\frac{11}{4}}\right) is defined if xx belongs to: (where .\lfloor . \rfloor represents the greatest integer function)

A

[0, \frac{7\pi}{6}]

B

(\frac{7\pi}{6}, \frac{11\pi}{6})

C

[\frac{11\pi}{6}, 2\pi]

D

[\pi, 2\pi]

Answer

[0, \frac{7\pi}{6}]

Explanation

Solution

To find the domain of the function f(x)=cos1(2sinx+cosxsin2x+2sinx+114)f(x)=\cos^{-1}\left(\frac{2\lfloor |\sin x|+|\cos x| \rfloor}{\sin^2 x+2\sin x+\frac{11}{4}}\right), we need to ensure that the argument of the cos1\cos^{-1} function lies in the interval [1,1][-1, 1].

Let the argument be Y=2sinx+cosxsin2x+2sinx+114Y = \frac{2\lfloor |\sin x|+|\cos x| \rfloor}{\sin^2 x+2\sin x+\frac{11}{4}}.

Step 1: Analyze the Numerator

Let N=2sinx+cosxN = 2\lfloor |\sin x|+|\cos x| \rfloor. We know that for any real xx, 1sinx+cosx21 \le |\sin x|+|\cos x| \le \sqrt{2}. To prove this, let S=sinx+cosxS = |\sin x|+|\cos x|. Then S2=(sinx+cosx)2=sin2x+cos2x+2sinxcosx=1+sin(2x)S^2 = (|\sin x|+|\cos x|)^2 = \sin^2 x + \cos^2 x + 2|\sin x \cos x| = 1 + |\sin(2x)|. Since 0sin(2x)10 \le |\sin(2x)| \le 1, we have 1S221 \le S^2 \le 2. Taking the square root, 1S21 \le S \le \sqrt{2}. Since 21.414\sqrt{2} \approx 1.414, we have 1sinx+cosx1.4141 \le |\sin x|+|\cos x| \le 1.414. Therefore, the greatest integer less than or equal to sinx+cosx|\sin x|+|\cos x| is sinx+cosx=1\lfloor |\sin x|+|\cos x| \rfloor = 1. So, the numerator N=2×1=2N = 2 \times 1 = 2.

Step 2: Analyze the Denominator

Let D=sin2x+2sinx+114D = \sin^2 x+2\sin x+\frac{11}{4}. Let t=sinxt = \sin x. Since 1sinx1-1 \le \sin x \le 1, we have 1t1-1 \le t \le 1. The denominator can be rewritten by completing the square: D=t2+2t+1+1141=(t+1)2+74D = t^2+2t+1 + \frac{11}{4} - 1 = (t+1)^2 + \frac{7}{4}. Now, we find the range of DD for t[1,1]t \in [-1, 1]. The minimum value of (t+1)2(t+1)^2 occurs at t=1t=-1, where (t+1)2=(1+1)2=0(t+1)^2 = (-1+1)^2 = 0. The maximum value of (t+1)2(t+1)^2 occurs at t=1t=1, where (t+1)2=(1+1)2=22=4(t+1)^2 = (1+1)^2 = 2^2 = 4. So, 0(t+1)240 \le (t+1)^2 \le 4. Adding 74\frac{7}{4} to all parts of the inequality: 74(t+1)2+744+74\frac{7}{4} \le (t+1)^2 + \frac{7}{4} \le 4 + \frac{7}{4}, which simplifies to 74D234\frac{7}{4} \le D \le \frac{23}{4}. Note that D>0D > 0 for all xx.

Step 3: Apply the condition for cos1\cos^{-1}

The argument of cos1\cos^{-1} is Y=ND=2DY = \frac{N}{D} = \frac{2}{D}. For cos1(Y)\cos^{-1}(Y) to be defined, we must have 1Y1-1 \le Y \le 1. Since D>0D > 0, Y=2DY = \frac{2}{D} will always be positive. So, Y>0Y > 0. Therefore, we only need to satisfy the condition Y1Y \le 1, which means 2D1\frac{2}{D} \le 1. Since D>0D > 0, we can multiply by DD without changing the inequality direction: 2D2 \le D.

Step 4: Find the condition on sinx\sin x

Substitute the expression for DD: (sinx+1)2+742(\sin x+1)^2 + \frac{7}{4} \ge 2. This simplifies to (sinx+1)214(\sin x+1)^2 \ge \frac{1}{4}. Taking the square root of both sides: sinx+112|\sin x+1| \ge \frac{1}{2}. This inequality implies two cases:

Case 1: sinx+112\sin x+1 \ge \frac{1}{2}, which gives sinx12\sin x \ge -\frac{1}{2}.

Case 2: sinx+112\sin x+1 \le -\frac{1}{2}, which gives sinx32\sin x \le -\frac{3}{2}. Since the range of sinx\sin x is [1,1][-1, 1], the condition sinx32\sin x \le -\frac{3}{2} is impossible.

Thus, the only condition for f(x)f(x) to be defined is sinx12\sin x \ge -\frac{1}{2}.

Step 5: Determine the interval for xx

We need to find the values of xx for which sinx12\sin x \ge -\frac{1}{2}. In the interval [0,2π][0, 2\pi], sinx=12\sin x = -\frac{1}{2} at x=π+π6=7π6x = \pi + \frac{\pi}{6} = \frac{7\pi}{6} and x=2ππ6=11π6x = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6}. The values of xx for which sinx12\sin x \ge -\frac{1}{2} are x[0,7π6][11π6,2π]x \in \left[0, \frac{7\pi}{6}\right] \cup \left[\frac{11\pi}{6}, 2\pi\right] (and periodically).

Comparing with the options, [0,7π6]\left[0, \frac{7\pi}{6}\right] is a subset of the domain.