Solveeit Logo

Question

Question: The function f(x) = ax<sup>2</sup> – bx – 4x<sup>3</sup> + g, where a, b, g, Ī R, has local maxima a...

The function f(x) = ax2 – bx – 4x3 + g, where a, b, g, Ī R, has local maxima at P(log2a, f(log2a)) & Local minima at Q (log2a2, f(log 2a2)). If the graph of f(x) changes concavity about the point R (34,f(34))\left( \frac { 3 } { 4 } , \mathrm { f } \left( \frac { 3 } { 4 } \right) \right) , then which of the following conic section can have eccentricity 'a'

A

Circle

B

Parabola

C

Ellipse

D

) Hyperbola

Explanation

Solution

)

Sol. f '(x) = 2ax – 12x2 – b

log 2a + 2log 2a = α6\frac { \alpha } { 6 }

(maxima & minima are roots of f '(x) = 0

log2a = α18\frac { \alpha } { 18 } ..........(i)

f "(x) = 2a – 24x = 0 Ž x = α12\frac { \alpha } { 12 }

Ž 34\frac { 3 } { 4 } = α12\frac { \alpha } { 12 } Ž a = 9

Ž log 2a = 918\frac { 9 } { 18 } (from (i))

\ a = 2\sqrt { 2 }