Solveeit Logo

Question

Question: The function \(f(x)\) at \(\infty\)...

The function f(x)f(x) at \infty

A

Is continuous but not differentiable

B

Is discontinuous

C

Is having continuous derivative

D

Is continuous and differentiable

Answer

Is continuous and differentiable

Explanation

Solution

limx0f(x)=x2sin(1x)\lim _ { x \rightarrow 0 } f ( x ) = x ^ { 2 } \sin \left( \frac { 1 } { x } \right) but 1sin(1x)1- 1 \leq \sin \left( \frac { 1 } { x } \right) \leq 1 and x0x \rightarrow 0

limx0+f(x)=0=limx0f(x)=f(0)\lim _ { x \rightarrow 0 ^ { + } } f ( x ) = 0 = \lim _ { x \rightarrow 0 ^ { - } } f ( x ) = f ( 0 )

Therefore f(x)f ( x ) is continuous at x=0x = 0. Also, the function f(x)=x2sin1xf ( x ) = x ^ { 2 } \sin \frac { 1 } { x } is differentiable because

Rf(x)=limh0h2sin1h0h=0R f ^ { \prime } ( x ) = \lim _ { h \rightarrow 0 } \frac { h ^ { 2 } \sin \frac { 1 } { h } - 0 } { h } = 0,Lf(x)=limh0h2sin(1h)h=0L f ^ { \prime } ( x ) = \lim _ { h \rightarrow 0 } \frac { h ^ { 2 } \sin \left( \frac { 1 } { - h } \right) } { - h } = 0.