Solveeit Logo

Question

Question: The function f(x) = (4sin<sup>2</sup> x – 1)<sup>n</sup> (x<sup>2</sup> – x + 1), n Ī N, has a local...

The function f(x) = (4sin2 x – 1)n (x2 – x + 1), n Ī N, has a local minimum at x = π6\frac { \pi } { 6 } , then –

A

n can be any even number

B

n can be any odd number

C

n can be odd prime number

D

) n can be any natural number

Answer

n can be any even number

Explanation

Solution

f(x) = (4sin2 x – 1)n (x2 – x + 1)

since x2 – x + 1 > 0 " x Ī R

f(p/6) = 0

f(p/6)+ = limxπ+6\lim _ { x \rightarrow \frac { \pi ^ { + } } { 6 } } (4sin2x – 1)n (x2 – x + 1) = ® 0+

f(p+/6) = limxπ6\lim _ { x \rightarrow \frac { \pi ^ { - } } { 6 } } (4sin2 x – 1)n (x2 – x + 1)

= ® (0)–n (a positive value)

f(p/6) > 0 if n is an even no.