Question
Question: The function f(x) = (4sin<sup>2</sup> x – 1)<sup>n</sup> (x<sup>2</sup> – x + 1), n Ī N, has a local...
The function f(x) = (4sin2 x – 1)n (x2 – x + 1), n Ī N, has a local minimum at x = 6π , then –
A
n can be any even number
B
n can be any odd number
C
n can be odd prime number
D
) n can be any natural number
Answer
n can be any even number
Explanation
Solution
f(x) = (4sin2 x – 1)n (x2 – x + 1)
since x2 – x + 1 > 0 " x Ī R
f(p/6) = 0
f(p/6)+ = limx→6π+ (4sin2x – 1)n (x2 – x + 1) = ® 0+
f(p+/6) = limx→6π− (4sin2 x – 1)n (x2 – x + 1)
= ® (0)–n (a positive value)
f(p–/6) > 0 if n is an even no.