Solveeit Logo

Question

Question: The function \(f(x) = 2\log(x - 2) - x^{2} + 4x + 1\) increases in the interval...

The function f(x)=2log(x2)x2+4x+1f(x) = 2\log(x - 2) - x^{2} + 4x + 1 increases

in the interval

A

(1,2)

B

(2,3)

C

(52,3)\left( \frac{5}{2},3 \right)

D

(2,4)(2,4)

Answer

(2,3)

Explanation

Solution

Note that f(x)f(x) is defined for

x>2,f(x)=2/(x2)2(x2)x > 2,f'(x) = 2/(x - 2) - 2(x - 2)

= 2[1(x2)2]/(x2)2\left\lbrack 1 - (x - 2)^{2} \right\rbrack/(x - 2).

As x>2x > 2, f(x)>0,f'(x) > 0, if 1(x2)2>01 - (x - 2)^{2} > 0 or (x2)2(x - 2)^{2}< 1 or 1 < x < 3. As x > 2,

we get f(x)f(x) increases on (2,3).