Solveeit Logo

Question

Question: The function \(\frac{f(x)e^{nx} + g(x)}{e^{nx} + 1}\) is...

The function f(x)enx+g(x)enx+1\frac{f(x)e^{nx} + g(x)}{e^{nx} + 1} is

A

Continuous at limx0\lim_{x \rightarrow 0}, but not differentiable

B

Both continuous and differentiable at limx1\lim_{x \rightarrow - 1}

C

Not continuous at π(cos1x)(x+1)\frac{\sqrt{\pi} - \sqrt{(\cos^{- 1}x)}}{\sqrt{(x + 1)}}

D

None of these

Answer

Continuous at limx0\lim_{x \rightarrow 0}, but not differentiable

Explanation

Solution

We have, Since,

limx1f(x)=limx11=1,limx1+f(x)=limx1+(2x1)=1\lim _ { x \rightarrow 1 ^ { - } } f ( x ) = \lim _ { x \rightarrow 1 ^ { - } } 1 = 1 , \lim _ { x \rightarrow 1 ^ { + } } f ( x ) = \lim _ { x \rightarrow 1 ^ { + } } ( 2 x - 1 ) = 1 and

f(1)=2×11=1f ( 1 ) = 2 \times 1 - 1 = 1

limx1f(x)=limx1+f(x)=f(1)\lim _ { x \rightarrow 1 ^ { - } } f ( x ) = \lim _ { x \rightarrow 1 ^ { + } } f ( x ) = f ( 1 ). So, f(x)f ( x ) is continuous at

x = 1.

Now, limx1f(x)f(1)x1=limh0f(1h)f(1)h=limh011h=0\lim _ { x \rightarrow 1 ^ { - } } \frac { f ( x ) - f ( 1 ) } { x - 1 } = \lim _ { h \rightarrow 0 } \frac { f ( 1 - h ) - f ( 1 ) } { - h } = \lim _ { h \rightarrow 0 } \frac { 1 - 1 } { - h } = 0,

and limx1+f(x)f(1)x1=limh0f(1+h)f(1)h\lim _ { x \rightarrow 1 ^ { + } } \frac { f ( x ) - f ( 1 ) } { x - 1 } = \lim _ { h \rightarrow 0 } \frac { f ( 1 + h ) - f ( 1 ) } { h } = limh02(1+h)11h=2\lim _ { h \rightarrow 0 } \frac { 2 ( 1 + h ) - 1 - 1 } { h } = 2 \therefore (LHD at x=1x = 1) ≠ (RHD atx=1x = 1). So, f(x) is not differentiable at x = 1.

Trick : The graph of f(x)f ( x ) i.e.

is

By graph, it is clear that the function is not differentiable at x=0x = 0, 1 as there it has sharp edges.