Solveeit Logo

Question

Mathematics Question on Application of derivatives

The function f(x)=xex(1x)f(x)=xe^{x(1-x)},x∈R is

A

increasing in (12,1)(-\frac{1}{2} , 1)

B

increasing in (12,1)(-\frac{1}{2} , 1)

C

increasing in (1,12)(-1 , -\frac{1}{2})

D

decreasing in (12,12)(-\frac{1}{2} , \frac{1}{2})

Answer

increasing in (12,1)(-\frac{1}{2} , 1)

Explanation

Solution

f(x)=xex(x1)f(x)=xe^{x(x−1)}

f(x)=ex(1x)+x2(1)ex(1x)+x(1x)ex(1x)f′(x)=e^{x(1−x)}+x^2(−1)e^{x(1−x)}+x(1−x)e^{x(1−x)}

=−ex(1x)(2x2x1)=ex(1x)(x1)(x+1/2)e^{x(1−x)}(2x^2−x−1)=−e^{x(1−x)}(x−1)(x+1/2)

f(x)=0f′(x)=0 at x=−1/2$$,1 and f(x)>0  when1/2<x<1f′(x)>0 \space when −1/2<x<1

⇒ f(x) is increasing function on [−1/2,1]