Solveeit Logo

Question

Mathematics Question on Differentiability

The function f(x)=[x]cos(2x12)πf(x) = [x] \cos \left(\frac{2x-1}{2}\right) \pi, [.] denotes the greatest integer function, is discontinuous at

A

All x

B

All integer points

C

No x

D

x which is not an integer

Answer

No x

Explanation

Solution

When x is not an integer, both the functions [x] and cos(2x12)π\cos \left(\frac{2x-1}{2}\right) \pi are continuous.
f(x)\therefore \, f(x) is continuous on all non integral points.
For x=nIx = n \in I
limxnf(x)=limxn[x]cos(2x12)π\displaystyle \lim_{x \to n^{-}} f\left(x\right) =\displaystyle \lim_{x \to n^{-}} \left[x\right]\cos\left(\frac{2x-1}{2}\right) \pi
=(n1)cos(212)π=0=\left(n-1\right) \cos \left(\frac{2-1}{2}\right) \pi= 0
limxn+f(x)=limxn+[x]cos(2x12)π\displaystyle \lim_{x \to n^{+}} f\left(x\right) =\displaystyle \lim_{x \to n^{+}} \left[x\right]\cos\left(\frac{2x-1}{2}\right) \pi
=ncos(2n12)π=0= n \cos\left(\frac{2n-1}{2}\right) \pi= 0
Also f(n)=ncos(2n1)π2=0f\left(n\right) = n \cos \frac{\left(2n-1\right)\pi}{2} = 0
f\therefore \, f is continuous at all integral pts as well.
Thus, ff is continuous everywhere.